Brüning JC, Fenselau H. Integrative neurocircuits that control metabolism and food intake. Science 2023, 381: eabl7398.
Jais A, Brüning JC. Arcuate nucleus-dependent regulation of metabolism-pathways to obesity and diabetes mellitus. Endocr Rev 2022, 43: 314–328.
Vohra MS, Benchoula K, Serpell CJ, Hwa WE. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur J Pharmacol 2022, 915: 174611.
Article CAS PubMed Google Scholar
Cheng W, Gordian D, Ludwig MQ, Pers TH, Seeley RJ Jr, Myers MG. Hindbrain circuits in the control of eating behaviour and energy balance. Nat Metab 2022, 4: 826–835.
Chen J, Cheng M, Wang L, Zhang L, Xu D, Cao P. A vagal-NTS neural pathway that stimulates feeding. Curr Biol 2020, 30: 3986-3998.e5.
Article CAS PubMed Google Scholar
Ritter S, Bugarith K, Dinh TT. Immunotoxic destruction of distinct catecholamine subgroups produces selective impairment of glucoregulatory responses and neuronal activation. J Comp Neurol 2001, 432: 197–216.
Article CAS PubMed Google Scholar
Zhao Z, Wang L, Gao W, Hu F, Zhang J, Ren Y, et al. A central catecholaminergic circuit controls blood glucose levels during stress. Neuron 2017, 95: 138-152.e5.
Article CAS PubMed Google Scholar
Duhl DM, Vrieling H, Miller KA, Wolff GL, Barsh GS. Neomorphic agouti mutations in obese yellow mice. Nat Genet 1994, 8: 59–65.
Article CAS PubMed Google Scholar
Manne J, Argeson AC, Siracusa LD. Mechanisms for the pleiotropic effects of the agouti gene. Proc Natl Acad Sci U S A 1995, 92: 4721–4724.
Article CAS PubMed PubMed Central Google Scholar
Ollmann MM, Wilson BD, Yang YK, Kerns JA, Chen Y, Gantz I, et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 1997, 278: 135–138.
Article CAS PubMed Google Scholar
Bachor TP, Hwang E, Yulyaningsih E, Attal K, Mifsud F, Pham V, et al. Identification of AgRP cells in the murine hindbrain that drive feeding. Mol Metab 2024, 80: 101886.
Article CAS PubMed PubMed Central Google Scholar
Gupta R, Ma Y, Wang M, Whim MD. AgRP-expressing adrenal chromaffin cells are involved in the sympathetic response to fasting. Endocrinology 2017, 158: 2572–2584.
Article CAS PubMed PubMed Central Google Scholar
Takahashi K, Katagiri H. Pituitary gland agouti-related peptide cells: Novel player controlling glucose metabolism. J Diabetes Investig 2024, 15: 67–69.
Article CAS PubMed Google Scholar
Wu Q, Whiddon BB, Palmiter RD. Ablation of neurons expressing agouti-related protein, but not melanin concentrating hormone, in leptin-deficient mice restores metabolic functions and fertility. Proc Natl Acad Sci U S A 2012, 109: 3155–3160.
Article CAS PubMed PubMed Central Google Scholar
Zhu C, Jiang Z, Xu Y, Cai ZL, Jiang Q, Xu Y, et al. Profound and redundant functions of arcuate neurons in obesity development. Nat Metab 2020, 2: 763–774.
Article CAS PubMed PubMed Central Google Scholar
Ilnytska O, Argyropoulos G. The role of the Agouti-related protein in energy balance regulation. Cell Mol Life Sci 2008, 65: 2721–2731.
Article CAS PubMed PubMed Central Google Scholar
Hahn TM, Breininger JF, Baskin DG, Schwartz MW. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci 1998, 1: 271–272.
Article CAS PubMed Google Scholar
Cowley MA, Smart JL, Rubinstein M, Cerdán MG, Diano S, Horvath TL, et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 2001, 411: 480–484.
Article CAS PubMed Google Scholar
Cansell C, Denis RGP, Joly-Amado A, Castel J, Luquet S. Arcuate AgRP neurons and the regulation of energy balance. Front Endocrinol 2012, 3: 169.
Chen Y, Lin YC, Zimmerman CA, Essner RA, Knight ZA. Hunger neurons drive feeding through a sustained, positive reinforcement signal. eLife 2016, 5: e18640.
Article PubMed PubMed Central Google Scholar
Gouveia A, de Oliveira Beleza R, Steculorum SM. AgRP neuronal activity across feeding-related behaviours. Eur J Neurosci 2021, 54: 7458–7475.
Article CAS PubMed Google Scholar
Atasoy D, Betley JN, Su HH, Sternson SM. Deconstruction of a neural circuit for hunger. Nature 2012, 488: 172–177.
Article CAS PubMed PubMed Central Google Scholar
Xu J, Bartolome CL, Low CS, Yi X, Chien CH, Wang P, et al. Genetic identification of leptin neural circuits in energy and glucose homeostases. Nature 2018, 556: 505–509.
Article CAS PubMed PubMed Central Google Scholar
Deem JD, Faber CL, Morton GJ. AgRP neurons: regulators of feeding, energy expenditure, and behavior. FEBS J 2022, 289: 2362–2381.
Article CAS PubMed Google Scholar
So WL, Hu J, Jeffs L, Dempsey H, Lockie SH, Zigman JM, et al. Ghrelin signalling in AgRP neurons links metabolic state to the sensory regulation of AgRP neural activity. Mol Metab 2023, 78: 101826.
Article CAS PubMed PubMed Central Google Scholar
Yang S, Tan YL, Wu X, Wang J, Sun J, Liu A, et al. An mPOA-ARCAgRP pathway modulates cold-evoked eating behavior. Cell Rep 2021, 36: 109502.
Article CAS PubMed Google Scholar
Deem JD, Faber CL, Pedersen C, Phan BA, Larsen SA, Ogimoto K, et al. Cold-induced hyperphagia requires AgRP neuron activation in mice. Elife 2020, 9: e58764.
Article CAS PubMed PubMed Central Google Scholar
Clark JT, Kalra PS, Crowley WR, Kalra SP. Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology 1984, 115: 427–429.
Article CAS PubMed Google Scholar
Stanley BG, Kyrkouli SE, Lampert S, Leibowitz SF. Neuropeptide Y chronically injected into the hypothalamus: a powerful neurochemical inducer of hyperphagia and obesity. Peptides 1986, 7: 1189–1192.
Article CAS PubMed Google Scholar
Marsh DJ, Miura GI, Yagaloff KA, Schwartz MW, Barsh GS, Palmiter RD. Effects of neuropeptide Y deficiency on hypothalamic agouti-related protein expression and responsiveness to melanocortin analogues. Brain Res 1999, 848: 66–77.
Article CAS PubMed Google Scholar
Qian S, Chen H, Weingarth D, Trumbauer ME, Novi DE, Guan X, et al. Neither agouti-related protein nor neuropeptide Y is critically required for the regulation of energy homeostasis in mice. Mol Cell Biol 2002, 22: 5027–5035.
留言 (0)