Sharma A, Nagalli S. Chronic Liver Disease. StatPearls. Treasure Island (FL) ineligible companies. Disclosure: Shivaraj Nagalli declares no relevant financial relationships with ineligible companies.2023.
Mesropyan N, Kupczyk PA, Dold L, Praktiknjo M, Chang J, Isaak A, Endler C, Kravchenko D, Bischoff LM, Sprinkart AM, Pieper CC, Kuetting D, Jansen C, Attenberger UI, Luetkens JA. Assessment of liver cirrhosis severity with extracellular volume fraction MRI. Sci Rep 2022;12(1):9422. https://doi.org/10.1038/s41598-022-13340-9
Article CAS PubMed PubMed Central Google Scholar
Carbonell G, Kennedy P, Bane O, Kirmani A, El Homsi M, Stocker D, Said D, Mukherjee P, Gevaert O, Lewis S, Hectors S, Taouli B. Precision of MRI radiomics features in the liver and hepatocellular carcinoma. Eur Radiol 2022;32(3):2030-2040. https://doi.org/10.1007/s00330-021-08282-1
Article CAS PubMed Google Scholar
Wei J, Jiang H, Gu D, Niu M, Fu F, Han Y, Song B, Tian J. Radiomics in liver diseases: Current progress and future opportunities. Liver international : official journal of the International Association for the Study of the Liver 2020;40(9):2050-2063. https://doi.org/10.1111/liv.14555
He L, Li H, Dudley JA, Maloney TC, Brady SL, Somasundaram E, Trout AT, Dillman JR. Machine Learning Prediction of Liver Stiffness Using Clinical and T2-Weighted MRI Radiomic Data. American Journal of Roentgenology 2019;213(3):1-10.
Venkatesh SK, Yin M, Ehman RL. Magnetic resonance elastography of liver: technique, analysis, and clinical applications. Journal of magnetic resonance imaging : JMRI 2013;37(3):544-555. https://doi.org/10.1002/jmri.23731
Reeder SB, Sirlin CB. Quantification of liver fat with magnetic resonance imaging. Magn Reson Imaging Clin N Am 2010;18(3):337–357, ix. https://doi.org/10.1016/j.mric.2010.08.013
Li L, Duan M, Chen W, Jiang A, Li X, Yang J, Li Z. The spleen in liver cirrhosis: revisiting an old enemy with novel targets. J Transl Med 2017;15(1):111. https://doi.org/10.1186/s12967-017-1214-8
Article CAS PubMed PubMed Central Google Scholar
Tarantino G, Citro V, Balsano C. Liver-spleen axis in nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2021;15(7):759-769. https://doi.org/10.1080/17474124.2021.1914587
Article CAS PubMed Google Scholar
Tsuchiya N, Sawada Y, Endo I, Saito K, Uemura Y, Nakatsura T. Biomarkers for the early diagnosis of hepatocellular carcinoma. World J Gastroenterol 2015;21(37):10573-10583. https://doi.org/10.3748/wjg.v21.i37.10573
Article CAS PubMed PubMed Central Google Scholar
Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 2021;18(2):203-211. https://doi.org/10.1038/s41592-020-01008-z
Article CAS PubMed Google Scholar
Sharma N, Aggarwal LM. Automated medical image segmentation techniques. J Med Phys 2010;35(1):3-14. https://doi.org/10.4103/0971-6203.58777
Article PubMed PubMed Central Google Scholar
Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net: learning dense volumetric segmentation from sparse annotation. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17–21, 2016, Proceedings, Part II 19: Springer, 2016; p. 424–432.
Bilic P, Christ P, Li HB, Vorontsov E, Ben-Cohen A, Kaissis G, Szeskin A, Jacobs C, Mamani GEH, Chartrand G, Lohofer F, Holch JW, Sommer W, Hofmann F, Hostettler A, Lev-Cohain N, Drozdzal M, Amitai MM, Vivanti R, Sosna J, Ezhov I, Sekuboyina A, Navarro F, Kofler F, Paetzold JC, Shit S, Hu X, Lipkova J, Rempfler M, Piraud M, Kirschke J, Wiestler B, Zhang Z, Hulsemeyer C, Beetz M, Ettlinger F, Antonelli M, Bae W, Bellver M, Bi L, Chen H, Chlebus G, Dam EB, Dou Q, Fu CW, Georgescu B, Giro INX, Gruen F, Han X, Heng PA, Hesser J, Moltz JH, Igel C, Isensee F, Jager P, Jia F, Kaluva KC, Khened M, Kim I, Kim JH, Kim S, Kohl S, Konopczynski T, Kori A, Krishnamurthi G, Li F, Li H, Li J, Li X, Lowengrub J, Ma J, Maier-Hein K, Maninis KK, Meine H, Merhof D, Pai A, Perslev M, Petersen J, Pont-Tuset J, Qi J, Qi X, Rippel O, Roth K, Sarasua I, Schenk A, Shen Z, Torres J, Wachinger C, Wang C, Weninger L, Wu J, Xu D, Yang X, Yu SC, Yuan Y, Yue M, Zhang L, Cardoso J, Bakas S, Braren R, Heinemann V, Pal C, Tang A, Kadoury S, Soler L, van Ginneken B, Greenspan H, Joskowicz L, Menze B. The Liver Tumor Segmentation Benchmark (LiTS). Med Image Anal 2023;84:102680. https://doi.org/10.1016/j.media.2022.102680
Jimenez-Pastor A, Alberich-Bayarri A, Lopez-Gonzalez R, Marti-Aguado D, Franca M, Bachmann RSM, Mazzucco J, Marti-Bonmati L. Precise whole liver automatic segmentation and quantification of PDFF and R2* on MR images. Eur Radiol 2021;31(10):7876-7887. https://doi.org/10.1007/s00330-021-07838-5
Marti-Aguado D, Jimenez-Pastor A, Alberich-Bayarri A, Rodriguez-Ortega A, Alfaro-Cervello C, Mestre-Alagarda C, Bauza M, Gallen-Peris A, Valero-Perez E, Ballester MP, Gimeno-Torres M, Perez-Girbes A, Benlloch S, Perez-Rojas J, Puglia V, Ferrandez A, Aguilera V, Escudero-Garcia D, Serra MA, Marti-Bonmati L. Automated Whole-Liver MRI Segmentation to Assess Steatosis and Iron Quantification in Chronic Liver Disease. Radiology 2022;302(2):345-354. https://doi.org/10.1148/radiol.2021211027
Zbinden L, Catucci D, Suter Y, Berzigotti A, Ebner L, Christe A, Obmann VC, Sznitman R, Huber AT. Convolutional neural network for automated segmentation of the liver and its vessels on non-contrast T1 vibe Dixon acquisitions. Sci Rep 2022;12(1):22059. https://doi.org/10.1038/s41598-022-26328-2
Article CAS PubMed PubMed Central Google Scholar
Azuri I, Wattad A, Peri-Hanania K, Kashti T, Rosen R, Caspi Y, Istaiti M, Wattad M, Applbaum Y, Zimran A, Revel-Vilk S, Y CE. A Deep-Learning Approach to Spleen Volume Estimation in Patients with Gaucher Disease. J Clin Med 2023;12(16). https://doi.org/10.3390/jcm12165361
Valindria VV, Pawlowski N, Rajchl M, Lavdas I, Aboagye EO, Rockall AG, Rueckert D, Glocker B. Multi-modal learning from unpaired images: Application to multi-organ segmentation in CT and MRI. 2018 IEEE winter conference on applications of computer vision (WACV): IEEE, 2018; p. 547–556.
Bobo MF, Bao S, Huo Y, Yao Y, Virostko J, Plassard AJ, Lyu I, Assad A, Abramson RG, Hilmes MA, Landman BA. Fully Convolutional Neural Networks Improve Abdominal Organ Segmentation. Proceedings of SPIE--the International Society for Optical Engineering 2018;10574. https://doi.org/10.1117/12.2293751
Kavur AE, Gezer NS, Barış M, Aslan S, Conze PH, Groza V, Pham DD, Chatterjee S, Ernst P, Özkan S, Baydar B, Lachinov D, Han S, Pauli J, Isensee F, Perkonigg M, Sathish R, Rajan R, Sheet D, Dovletov G, Speck O, Nürnberger A, Maier-Hein KH, Bozdağı Akar G, Ünal G, Dicle O, Selver MA. CHAOS Challenge - combined (CT-MR) healthy abdominal organ segmentation. Med Image Anal 2021;69:101950. https://doi.org/10.1016/j.media.2020.101950
Liu Y, Han T, Ma S, Zhang J, Yang Y, Tian J, He H, Li A, He M, Liu Z. Summary of chatgpt-related research and perspective towards the future of large language models. Meta-Radiology 2023:100017.
Shen Y, Heacock L, Elias J, Hentel KD, Reig B, Shih G, Moy L. ChatGPT and Other Large Language Models Are Double-edged Swords. Radiology 2023;307(2):e230163. https://doi.org/10.1148/radiol.230163
Cao H, Wang Y, Chen J, Jiang D, Zhang X, Tian Q, Wang M. Swin-unet: Unet-like pure transformer for medical image segmentation. European conference on computer vision: Springer, 2022; p. 205-218.
Hatamizadeh A, Tang Y, Nath V, Yang D, Myronenko A, Landman B, Roth HR, Xu D. Unetr: Transformers for 3d medical image segmentation. Proceedings of the IEEE/CVF winter conference on applications of computer vision2022; p. 574–584.
Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B. Swin transformer: Hierarchical vision transformer using shifted windows. Proceedings of the IEEE/CVF international conference on computer vision2021; p. 10012–10022.
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention 2015:234–241.
Hatamizadeh A, Nath V, Tang Y, Yang D, Roth HR, Xu D. Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images. International MICCAI Brainlesion Workshop: Springer, 2021; p. 272-284.
Furtado P. Improving deep segmentation of abdominal organs MRI by post-processing. BioMedInformatics 2021;1(3):88-105.
Humpire-Mamani GE, Bukala J, Scholten ET, Prokop M, van Ginneken B, Jacobs C. Fully Automatic Volume Measurement of the Spleen at CT Using Deep Learning. Radiology Artificial intelligence 2020;2(4):e190102. https://doi.org/10.1148/ryai.2020190102
Article PubMed PubMed Central Google Scholar
Gal Y, Ghahramani Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. international conference on machine learning: PMLR, 2016; p. 1050–1059.
Carass A, Roy S, Gherman A, Reinhold JC, Jesson A, Arbel T, Maier O, Handels H, Ghafoorian M, Platel B, Birenbaum A, Greenspan H, Pham DL, Crainiceanu CM, Calabresi PA, Prince JL, Roncal WRG, Shinohara RT, Oguz I. Evaluating White Matter Lesion Segmentations with Refined Sorensen-Dice Analysis. Sci Rep 2020;10(1):8242. https://doi.org/10.1038/s41598-020-64803-w
Article CAS PubMed PubMed Central Google Scholar
Wasserthal J, Breit HC, Meyer MT, Pradella M, Hinck D, Sauter AW, Heye T, Boll DT, Cyriac J, Yang S, Bach M, Segeroth M. TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images. Radiology Artificial intelligence 2023;5(5):e230024. https://doi.org/10.1148/ryai.230024
Article PubMed PubMed Central Google Scholar
Pang Y, Liang J, Huang T, Chen H, Li Y, Li D, Huang L, Wang Q. Slim UNETR: Scale Hybrid Transformers to Efficient 3D Medical Image Segmentation Under Limited Computational Resources. IEEE Trans Med Imaging 2023;PP. https://doi.org/10.1109/TMI.2023.3326188
Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y, Lu L, Yuille AL, Zhou Y. Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:210204306 2021.
Wang W, Chen C, Ding M, Yu H, Zha S, Li J. Transbts: Multimodal brain tumor segmentation using transformer. Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24: Springer, 2021; p. 109–119.
Biswas SS. Role of Chat GPT in Public Health. Annals of biomedical engineering 2023. https://doi.org/10.1007/s10439-023-03172-7
Kothari AN. ChatGPT, Large Language Models, and Generative AI as Future Augments of Surgical Cancer Care. Annals of surgical oncology 2023. https://doi.org/10.1245/s10434-023-13442-2
Conte GM, Weston AD, Vogelsang DC, Philbrick KA, Cai JC, Barbera M, Sanvito F, Lachance DH, Jenkins RB, Tobin WO, Eckel-Passow JE, Erickson BJ. Generative Adversarial Networks to Synthesize Missing T1 and FLAIR MRI Sequences for Use in a Multisequence Brain Tumor Segmentation Model. Radiology 2021;299(2):313-323. https://doi.org/10.1148/radiol.2021203786
留言 (0)