Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3), 209-249, 2021.
Minlu, Z. H. A. N. G., Chunxiao, W. U., & Yangming, G. O. N. G. Survival analysis of patients with lung cancer in Shanghai. China Oncology, 27(5), 326-333, 2017.
Poulet, G., Massias, J., & Taly, V. Liquid biopsy: general concepts. Acta cytologica, 63(6), 449-455, 2019.
Article CAS PubMed Google Scholar
Qiu, X., Zhang, H., Zhao, Y., Zhao, J., Wan, Y., Li, D., ... & Lin, D. Application of circulating genetically abnormal cells in the diagnosis of early-stage lung cancer. Journal of Cancer Research and Clinical Oncology, 148(3), 685–695, 2022.
Ferreira, M. M., Ramani, V. C., & Jeffrey, S. S. Circulating tumor cell technologies. Molecular oncology, 10(3), 374-394, 2016.
Article CAS PubMed PubMed Central Google Scholar
Katz, R. L., He, W., Khanna, A., Fernandez, R. L., Zaidi, T. M., Krebs, M., ... & El-Zein, R. Genetically Abnormal Circulating Cells in Lung Cancer Patients: An Antigen-Independent Fluorescence In situ Hybridization–Based Case-Control Study. Clinical Cancer Research, 16(15), 3976–3987, 2010.
Liu, J., Lian, J., Chen, Y., Zhao, X., Du, C., Xu, Y., ... & Hong, X. Circulating tumor cells (CTCs): a unique model of cancer metastases and non-invasive biomarkers of therapeutic response. Frontiers in Genetics, 12, 734595, 2021.
Xu, C., Zhang, Y., Fan, X., Lan, X., Ye, X., & Wu, T. An efficient fluorescence in situ hybridization (FISH)-based circulating genetically abnormal cells (CACs) identification method based on Multi-scale MobileNet-YOLO-V4. Quantitative Imaging in Medicine and Surgery, 12(5), 2961, 2022.
Article PubMed PubMed Central Google Scholar
Xu, X., Li, C., Fan, X., Lan, X., Lu, X., Ye, X., & Wu, T. Attention Mask R‐CNN with edge refinement algorithm for identifying circulating genetically abnormal cells. Cytometry Part A, 103(3), 227-239, 2023.
Xu, X., Li, C., Lan, X., Fan, X., Lv, X., Ye, X., & Wu, T. A lightweight and robust framework for circulating genetically abnormal cells (CACs) identification using 4-color fluorescence in situ hybridization (FISH) image and deep refined learning. Journal of Digital Imaging, 36(4), 1687-1700, 2023.
Article PubMed PubMed Central Google Scholar
Wang, Z., Li, Y., & Wang, S. Noisy boundaries: Lemon or lemonade for semi-supervised instance segmentation?. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 16826–16835), 2022.
Hu, J., Chen, C., Cao, L., Zhang, S., Shu, A., Jiang, G., & Ji, R. Pseudo-label alignment for semi-supervised instance segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 16337–16347), 2023.
Berrada, T., Couprie, C., Alahari, K., & Verbeek, J. Guided distillation for semi-supervised instance segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 475–483), 2024.
Rumberger, J. L., Franzen, J., Hirsch, P., Albrecht, J. P., & Kainmueller, D. ACTIS: Improving data efficiency by leveraging semi-supervised Augmentation Consistency Training for Instance Segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 3790–3799), 2023.
Sohn, K., Zhang, Z., Li, C. L., Zhang, H., Lee, C. Y., & Pfister, T. A simple semi-supervised learning framework for object detection. arXiv preprint arXiv:2005.04757, 2020.
Liu, Y. C., Ma, C. Y., He, Z., Kuo, C. W., Chen, K., Zhang, P., ... & Vajda, P. Unbiased teacher for semi-supervised object detection. arXiv preprint arXiv:2102.09480, 2021.
Liu, Y. C., Ma, C. Y., & Kira, Z. Unbiased teacher v2: Semi-supervised object detection for anchor-free and anchor-based detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 9819–9828), 2022.
Guo, Z., Lin, X., Hui, Y., Wang, J., Zhang, Q., & Kong, F. Circulating tumor cell identification based on deep learning. Frontiers in Oncology, 12, 843879, 2022.
Article CAS PubMed PubMed Central Google Scholar
Liu, W. R., Zhang, B., Chen, C., Li, Y., Ye, X., Tang, D. J., ... & Wang, C. L. Detection of circulating genetically abnormal cells in peripheral blood for early diagnosis of non‐small cell lung cancer. Thoracic Cancer, 11(11), 3234–3242, 2020.
Sasaki, Y. The truth oh the f–measure. Manchester: School of Computer Science, University of Manchester, 2007.
留言 (0)