Abulfadl Y et al (2018) Thymoquinone alleviates the experimentally induced Alzheimer’s disease inflammation by modulation of TLRs signaling. Hum Exp Toxicol 37(10):1092–1104
Article CAS PubMed Google Scholar
Adibhatla RM, Hatcher JF (2010) Lipid oxidation and peroxidation in CNS health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 12(1):125–169
Article CAS PubMed Google Scholar
Al-Hilaly YK et al (2013) A central role for dityrosine crosslinking of Amyloid-β in Alzheimer’s disease. Acta Neuropathol Commun 1:1–17
Ali FE et al (2005) Methionine regulates copper/hydrogen peroxide oxidation products of Aβ. J Pept Sci off Publ Eur Pept Soc 11(6):353–360
Aliev G et al (2014) Oxidative stress mediated mitochondrial and vascular lesions as markers in the pathogenesis of Alzheimer disease. Curr Med Chem 21(19):2208–2217
Article CAS PubMed Google Scholar
Allen M et al (2012) Glutathione S-transferase omega genes in Alzheimer and Parkinson disease risk, age-at-diagnosis and brain gene expression: an association study with mechanistic implications. Mol Neurodegener 7:1–12
2020 Alzheimer's disease facts and figures. Alzheimers Dement, 2020
Arbo BD et al (2020) Resveratrol derivatives as potential treatments for Alzheimer’s and Parkinson’s disease. Front Aging Neurosci 12:103
Article CAS PubMed PubMed Central Google Scholar
Arslan J, Jamshed H, Qureshi H (2020) Early detection and prevention of Alzheimer’s disease: role of oxidative markers and natural antioxidants. Front Aging Neurosci 12:231
Article CAS PubMed PubMed Central Google Scholar
Atwood CS et al (2004) Copper mediates dityrosine cross-linking of Alzheimer’s amyloid-β. Biochemistry 43(2):560–568
Article CAS PubMed Google Scholar
Azimi A et al (2016) α-Cyperone of Cyperus rotundus is an effective candidate for reduction of inflammation by destabilization of microtubule fibers in brain. J Ethnopharmacol 194:219–227
Article CAS PubMed Google Scholar
Balland V, Hureau C, Savéant J-M (2010) Electrochemical and homogeneous electron transfers to the Alzheimer amyloid-β copper complex follow a preorganization mechanism. Proc Natl Acad Sci 107(40):17113–17118
Article CAS PubMed PubMed Central Google Scholar
Banks WA, Rhea EM (2021) The blood–brain barrier, oxidative stress, and insulin resistance. Antioxidants 10(11):1695
Article CAS PubMed PubMed Central Google Scholar
Barbero-Camps E et al (2013) APP/PS1 mice overexpressing SREBP-2 exhibit combined Aβ accumulation and tau pathology underlying Alzheimer’s disease. Hum Mol Genet 22(17):3460–3476
Article CAS PubMed PubMed Central Google Scholar
Barnham KJ et al (2004) Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer’s disease β-amyloid. FASEB J 18(12):1427–1429
Article CAS PubMed Google Scholar
Baruch-Suchodolsky R, Fischer B (2008) Soluble amyloid β1− 28− Copper (I)/Copper (II)/Iron (II) complexes are potent antioxidants in cell-free systems. Biochemistry 47(30):7796–7806
Article CAS PubMed Google Scholar
Baschiera E et al (2021) The multiple roles of coenzyme Q in cellular homeostasis and their relevance for the pathogenesis of coenzyme Q deficiency. Free Radic Biol Med 166:277–286
Article CAS PubMed Google Scholar
Baum L, Ng A (2004) Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J Alzheimers Dis 6(4):367–377
Article CAS PubMed Google Scholar
Bayir H (2005) Reactive oxygen species. Crit Care Med 33(12 Suppl):S498-501
Bhattacharya A et al (1999) Antioxidant activity of active tannoid principles of Emblica officinalis (amla). NISCAIR-CSIR, India, pp 676–680
Bielski BH et al (1985) Reactivity of HO2/O− 2 radicals in aqueous solution. J Phys Chem Ref Data 14(4):1041–1100
Block KI et al (2008) Impact of antioxidant supplementation on chemotherapeutic toxicity: a systematic review of the evidence from randomized controlled trials. Int J Cancer 123(6):1227–1239
Article CAS PubMed Google Scholar
Bonnefont-Rousselot D, Beaudeux J, Delattre J (2005) Radicaux libres et stress oxidant: aspects biologiques et pathologiques. Lavoisier, Paris, pp 147–167
Bousejra-ElGarah F et al (2011) Iron (II) binding to amyloid-β, the Alzheimer’s peptide. Inorg Chem 50(18):9024–9030
Article CAS PubMed Google Scholar
Buccellato FR et al (2021) Role of oxidative damage in alzheimer’s disease and neurodegeneration: from pathogenic mechanisms to biomarker discovery. Antioxidants 10(9):1353
Article CAS PubMed PubMed Central Google Scholar
Burgener SC et al (2008) Evidence supporting nutritional interventions for persons in early stage Alzheimer’s disease (AD). J Nutr Health Aging 12:18–21
Article CAS PubMed Google Scholar
Butterfield DA (2014) The 2013 SFRBM discovery award: selected discoveries from the butterfield laboratory of oxidative stress and its sequela in brain in cognitive disorders exemplified by Alzheimer disease and chemotherapy induced cognitive impairment. Free Radic Biol Med 74:157–174
Article CAS PubMed Google Scholar
Butterfield DA, Lauderback CM (2002) Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress. Free Radic Biol Med 32(11):1050–1060
Article CAS PubMed Google Scholar
Butterfield DA, Sultana R (2011) Methionine-35 of Aβ (1–42): importance for oxidative stress in Alzheimer disease. J Amino Acids 2011(1):198430
PubMed PubMed Central Google Scholar
Butterfield DA et al (2001) Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid β-peptide. Trends Mol Med 7(12):548–554
Article CAS PubMed Google Scholar
Butterfield DA et al (2007) Roles of amyloid β-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radic Biol Med 43(5):658–677
Article CAS PubMed PubMed Central Google Scholar
Butterfield DA, Lange MLB, Sultana R (2010) Involvements of the lipid peroxidation product, HNE, in the pathogenesis and progression of Alzheimer’s disease. Biochimica Et Biophysica Acta (BBA)-Mole Cell Biol Lipids 1801(8):924–929
Cabezas-Opazo FA et al (2015) Mitochondrial dysfunction contributes to the pathogenesis of Alzheimer’s disease. Oxid Med Cell Longev 2015(1):509654
PubMed PubMed Central Google Scholar
Casati M et al (2020) Vitamin E and Alzheimer’s disease: The mediating role of cellular aging. Aging Clin Exp Res 32:459–464
Cassagnes LE et al (2013) The catalytically active copper-amyloid-Beta state: coordination site responsible for reactive oxygen species production. Angewandte Chemie Int Edit 52(42):5
留言 (0)