Examining the role of antioxidant supplementation in mitigating oxidative stress markers in Alzheimer’s disease: a comprehensive review

Abulfadl Y et al (2018) Thymoquinone alleviates the experimentally induced Alzheimer’s disease inflammation by modulation of TLRs signaling. Hum Exp Toxicol 37(10):1092–1104

Article  CAS  PubMed  Google Scholar 

Adibhatla RM, Hatcher JF (2010) Lipid oxidation and peroxidation in CNS health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 12(1):125–169

Article  CAS  PubMed  Google Scholar 

Al-Hilaly YK et al (2013) A central role for dityrosine crosslinking of Amyloid-β in Alzheimer’s disease. Acta Neuropathol Commun 1:1–17

Article  Google Scholar 

Ali FE et al (2005) Methionine regulates copper/hydrogen peroxide oxidation products of Aβ. J Pept Sci off Publ Eur Pept Soc 11(6):353–360

CAS  Google Scholar 

Aliev G et al (2014) Oxidative stress mediated mitochondrial and vascular lesions as markers in the pathogenesis of Alzheimer disease. Curr Med Chem 21(19):2208–2217

Article  CAS  PubMed  Google Scholar 

Allen M et al (2012) Glutathione S-transferase omega genes in Alzheimer and Parkinson disease risk, age-at-diagnosis and brain gene expression: an association study with mechanistic implications. Mol Neurodegener 7:1–12

Article  Google Scholar 

2020 Alzheimer's disease facts and figures. Alzheimers Dement, 2020

Arbo BD et al (2020) Resveratrol derivatives as potential treatments for Alzheimer’s and Parkinson’s disease. Front Aging Neurosci 12:103

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arslan J, Jamshed H, Qureshi H (2020) Early detection and prevention of Alzheimer’s disease: role of oxidative markers and natural antioxidants. Front Aging Neurosci 12:231

Article  CAS  PubMed  PubMed Central  Google Scholar 

Atwood CS et al (2004) Copper mediates dityrosine cross-linking of Alzheimer’s amyloid-β. Biochemistry 43(2):560–568

Article  CAS  PubMed  Google Scholar 

Azimi A et al (2016) α-Cyperone of Cyperus rotundus is an effective candidate for reduction of inflammation by destabilization of microtubule fibers in brain. J Ethnopharmacol 194:219–227

Article  CAS  PubMed  Google Scholar 

Balland V, Hureau C, Savéant J-M (2010) Electrochemical and homogeneous electron transfers to the Alzheimer amyloid-β copper complex follow a preorganization mechanism. Proc Natl Acad Sci 107(40):17113–17118

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banks WA, Rhea EM (2021) The blood–brain barrier, oxidative stress, and insulin resistance. Antioxidants 10(11):1695

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barbero-Camps E et al (2013) APP/PS1 mice overexpressing SREBP-2 exhibit combined Aβ accumulation and tau pathology underlying Alzheimer’s disease. Hum Mol Genet 22(17):3460–3476

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barnham KJ et al (2004) Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer’s disease β-amyloid. FASEB J 18(12):1427–1429

Article  CAS  PubMed  Google Scholar 

Baruch-Suchodolsky R, Fischer B (2008) Soluble amyloid β1− 28− Copper (I)/Copper (II)/Iron (II) complexes are potent antioxidants in cell-free systems. Biochemistry 47(30):7796–7806

Article  CAS  PubMed  Google Scholar 

Baschiera E et al (2021) The multiple roles of coenzyme Q in cellular homeostasis and their relevance for the pathogenesis of coenzyme Q deficiency. Free Radic Biol Med 166:277–286

Article  CAS  PubMed  Google Scholar 

Baum L, Ng A (2004) Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J Alzheimers Dis 6(4):367–377

Article  CAS  PubMed  Google Scholar 

Bayir H (2005) Reactive oxygen species. Crit Care Med 33(12 Suppl):S498-501

Article  PubMed  Google Scholar 

Bhattacharya A et al (1999) Antioxidant activity of active tannoid principles of Emblica officinalis (amla). NISCAIR-CSIR, India, pp 676–680

Google Scholar 

Bielski BH et al (1985) Reactivity of HO2/O− 2 radicals in aqueous solution. J Phys Chem Ref Data 14(4):1041–1100

Article  CAS  Google Scholar 

Block KI et al (2008) Impact of antioxidant supplementation on chemotherapeutic toxicity: a systematic review of the evidence from randomized controlled trials. Int J Cancer 123(6):1227–1239

Article  CAS  PubMed  Google Scholar 

Bonnefont-Rousselot D, Beaudeux J, Delattre J (2005) Radicaux libres et stress oxidant: aspects biologiques et pathologiques. Lavoisier, Paris, pp 147–167

Google Scholar 

Bousejra-ElGarah F et al (2011) Iron (II) binding to amyloid-β, the Alzheimer’s peptide. Inorg Chem 50(18):9024–9030

Article  CAS  PubMed  Google Scholar 

Buccellato FR et al (2021) Role of oxidative damage in alzheimer’s disease and neurodegeneration: from pathogenic mechanisms to biomarker discovery. Antioxidants 10(9):1353

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burgener SC et al (2008) Evidence supporting nutritional interventions for persons in early stage Alzheimer’s disease (AD). J Nutr Health Aging 12:18–21

Article  CAS  PubMed  Google Scholar 

Butterfield DA (2014) The 2013 SFRBM discovery award: selected discoveries from the butterfield laboratory of oxidative stress and its sequela in brain in cognitive disorders exemplified by Alzheimer disease and chemotherapy induced cognitive impairment. Free Radic Biol Med 74:157–174

Article  CAS  PubMed  Google Scholar 

Butterfield DA, Lauderback CM (2002) Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress. Free Radic Biol Med 32(11):1050–1060

Article  CAS  PubMed  Google Scholar 

Butterfield DA, Sultana R (2011) Methionine-35 of Aβ (1–42): importance for oxidative stress in Alzheimer disease. J Amino Acids 2011(1):198430

PubMed  PubMed Central  Google Scholar 

Butterfield DA et al (2001) Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid β-peptide. Trends Mol Med 7(12):548–554

Article  CAS  PubMed  Google Scholar 

Butterfield DA et al (2007) Roles of amyloid β-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radic Biol Med 43(5):658–677

Article  CAS  PubMed  PubMed Central  Google Scholar 

Butterfield DA, Lange MLB, Sultana R (2010) Involvements of the lipid peroxidation product, HNE, in the pathogenesis and progression of Alzheimer’s disease. Biochimica Et Biophysica Acta (BBA)-Mole Cell Biol Lipids 1801(8):924–929

Article  CAS  Google Scholar 

Cabezas-Opazo FA et al (2015) Mitochondrial dysfunction contributes to the pathogenesis of Alzheimer’s disease. Oxid Med Cell Longev 2015(1):509654

PubMed  PubMed Central  Google Scholar 

Casati M et al (2020) Vitamin E and Alzheimer’s disease: The mediating role of cellular aging. Aging Clin Exp Res 32:459–464

Article  PubMed  Google Scholar 

Cassagnes LE et al (2013) The catalytically active copper-amyloid-Beta state: coordination site responsible for reactive oxygen species production. Angewandte Chemie Int Edit 52(42):5

Google Scholar 

留言 (0)

沒有登入
gif