High-power versus low-power laser settings during endoscopic stone disease management: a systematic review from the EAU endourology section

Fried NM (2006) Therapeutic applications of lasers in urology: an update. Expert Rev Med Devices 3(1):81–94. https://doi.org/10.1586/17434440.3.1.81. (PMID: 16359255)

Article  PubMed  Google Scholar 

Noureldin YA, Kallidonis P, Liatsikos EN (2020) Lasers for stone treatment: how safe are they? Curr Opin Urol 30(2):130–134. https://doi.org/10.1097/MOU.0000000000000706. (PMID: 31895074)

Article  PubMed  Google Scholar 

Leveillee RJ, Lobik L (2003) Intracorporeal lithotripsy: which modality is best? Curr Opin Urol 13(3):249–253. https://doi.org/10.1097/00042307-200305000-00014. (PMID: 12692450)

Article  PubMed  Google Scholar 

Ordon M, Urbach D, Mamdani M, Saskin R, Da Honey RJ, Pace KT (2014) The surgical management of kidney stone disease: a population based time series analysis. J Urol 192(5):1450–1456. https://doi.org/10.1016/j.juro.2014.05.095. (Epub 2014 May 24 PMID: 24866599)

Article  PubMed  Google Scholar 

Coptcoat MJ, Ison KT, Watson G, Wickham JE (1988) Lasertripsy for ureteric stones in 120 cases: lessons learned. Br J Urol 61(6):487–489. https://doi.org/10.1111/j.1464-410x.1988.tb05085.x. (PMID: 2900041)

Article  CAS  PubMed  Google Scholar 

Erhard MJ, Bagley DH (1995) Urologic applications of the holmium laser: preliminary experience. J Endourol 9(5):383–386. https://doi.org/10.1089/end.1995.9.383. (PMID: 8580937)

Article  CAS  PubMed  Google Scholar 

Knudsen BE (2019) Laser fibers for holmium:YAG lithotripsy: what is important and what is new. Urol Clin North Am 46(2):185–191. https://doi.org/10.1016/j.ucl.2018.12.004. (PMID: 30961852)

Article  PubMed  Google Scholar 

Becker B, Gross AJ, Netsch C (2019) Ho: YaG laser lithotripsy: recent innovations. Curr Opin Urol 29(2):103–107. https://doi.org/10.1097/MOU.0000000000000573. (PMID: 30407221)

Article  PubMed  Google Scholar 

Kronenberg P, Traxer O (2015) Update on lasers in urology 2014: current assessment on holmium:yttrium-aluminum-garnet (Ho:YAG) laser lithotripter settings and laser fibers. World J Urol 33(4):463–469. https://doi.org/10.1007/s00345-014-1395-1. (Epub 2014 Sep 4 PMID: 25185524)

Article  PubMed  Google Scholar 

Emiliani E, Angerri O (2021) High-power, high-frequency Ho:YAG lasers are essential for retrograde intrarenal surgery. Eur Urol Focus 7(1):3–4. https://doi.org/10.1016/j.euf.2020.08.008. (Epub 2020 Sep 15 PMID: 32948503)

Article  PubMed  Google Scholar 

Aldoukhi AH, Black KM, Hall TL, Roberts WW, Ghani KR (2020) Frequency threshold for ablation during holmium laser lithotripsy: how high can you go? J Endourol 34(10):1075–1081. https://doi.org/10.1089/end.2020.0149. (Epub 2020 Jul 20 PMID: 32483996)

Article  PubMed  Google Scholar 

Yong R, Tasian GE, Kraft KH, Roberts WW, Maxwell A, Ellison JS (2022) Laser access and utilization preferences for pediatric ureteroscopy: a survey of the Societies of Pediatric Urology. Can Urol Assoc J 16(3):E155–E160. https://doi.org/10.5489/cuaj.7326.PMID:34672934;PMCID:PMC8923890

Article  PubMed  Google Scholar 

Dindo D, Demartines N, Clavien PA (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240(2):205–213. https://doi.org/10.1097/01.sla.0000133083.54934.ae.PMID:15273542;PMCID:PMC1360123

Article  PubMed  PubMed Central  Google Scholar 

Harris WN, Cao L, Tasian GE (2022) Comparative effectiveness of high-power holmium laser lithotripsy for pediatric patients with kidney and ureteral stones. J Pediatr Urol 18(4):463.e1-463.e8. https://doi.org/10.1016/j.jpurol.2022.05.022. (Epub 2022 Jun 2 PMID: 35715329)

Article  PubMed  Google Scholar 

Pietropaolo A, Mani M, Hughes T, Somani BK (2022) Role of low- versus high-power laser in the treatment of lower pole stones: prospective non-randomized outcomes from a university teaching hospital. Ther Adv Urol 26(14):17562872221097344. https://doi.org/10.1177/17562872221097345.PMID:35651485;PMCID:PMC9149605

Article  Google Scholar 

Chen S, Zhu L, Yang S, Wu W, Liao L, Tan J (2012) High- vs low-power holmium laser lithotripsy: a prospective, randomized study in patients undergoing multitract minipercutaneous nephrolithotomy. Urology 79(2):293–297. https://doi.org/10.1016/j.urology.2011.08.036. (Epub 2011 Oct 15 PMID: 22001100)

Article  PubMed  Google Scholar 

GarcíaRojo E, Traxer O, Vallejo Arzayús DM, Castellani D, Ferreti S, Gatti C, Bujons A, Quiroz Y, Yuen-Chun Teoh J, Ragoori D, Bhatia TP, Vaddi CM, Shrestha A, Lim EJ, Sinha MM, Griffin S, Pietropaolo A, Fong KY, Tanidir Y, Somani BK, Gauhar V (2023) Comparison of low-power vs high-power holmium lasers in pediatric retrograde intrarenal surgery outcomes. J Endourol 37(5):509–515. https://doi.org/10.1089/end.2022.0778. (Epub 2023 Apr 12 PMID: 36860192)

Article  Google Scholar 

Bhat A, Katz JE, Banerjee I, Blachman-Braun R, Alter K, Shah RH, Smith NA, Shah HN (2021) A prospective evaluation of high- and low-power holmium laser settings for transurethral lithotripsy in the management of adults with large bladder calculi. World J Urol 39(9):3481–3488. https://doi.org/10.1007/s00345-021-03617-5. (Epub 2021 Feb 24 PMID: 33624144)

Article  PubMed  Google Scholar 

Shrestha A, Corrales M, Adhikari B, Chapagain A, Traxer O (2022) Comparison of low power and high power holmium YAG laser settings in flexible ureteroscopy. World J Urol 40(7):1839–1844. https://doi.org/10.1007/s00345-022-04040-0. (Epub 2022 May 28 PMID: 35633401)

Article  PubMed  Google Scholar 

Tsaturyan A, Ballesta Martinez B, Lattarulo M, Adamou C, Pagonis K, Peteinaris A, Liourdi D, Vrettos T, Liatsikos E, Kallidonis P (2022) Could the high-power laser increase the efficacy of stone lithotripsy during retrograde intrarenal surgery? J Endourol 36(7):877–884. https://doi.org/10.1089/end.2021.0870. (Epub 2022 Jun 13 PMID: 35018789)

Article  PubMed  Google Scholar 

Zhu Z, Xi Q, Wang S, Liu J, Ye Z, Yu X, Bai J, Li C (2010) Percutaneous nephrolithotomy for proximal ureteral calculi with severe hydronephrosis: assessment of different lithotriptors. J Endourol 24(2):201–205. https://doi.org/10.1089/end.2009.0350. (PMID: 20039821)

Article  PubMed  Google Scholar 

Fahmy A, Youssif M, Rhashad H, Orabi S, Mokless I (2016) Extractable fragment versus dusting during ureteroscopic laser lithotripsy in children: prospective randomized study. J Pediatr Urol 12(4):254.e1–4. https://doi.org/10.1016/j.jpurol.2016.04.037. (Epub 2016 Jun 4 PMID: 27545024)

Article  PubMed  Google Scholar 

Mekayten M, Lorber A, Katafigiotis I, Sfoungaristos S, Leotsakos I, Heifetz EM, Yutkin V, Gofrit ON, Duvdevani M (2019) Will stone density stop being a key factor in endourology? The impact of stone density on laser time using lumenis laser p120w and standard 20 W laser: a comparative study. J Endourol 33(7):585–589. https://doi.org/10.1089/end.2019.0181. (Epub 2019 Jun 28 PMID: 31084375)

Article  PubMed  Google Scholar 

Whitehurst L, Pietropaolo A, Geraghty R, Kyriakides R, Somani BK (2020) Factors affecting operative time during ureteroscopy and stone treatment and its effect on outcomes: retrospective results over 6.5 years. Ther Adv Urol. https://doi.org/10.1177/1756287220934403

Article  PubMed  PubMed Central  Google Scholar 

Miller DT, Semins MJ (2021) Safety during ureteroscopy: radiation, eyes, and ergonomics. Front Surg. https://doi.org/10.3389/fsurg.2021.737337

Article  PubMed  PubMed Central  Google Scholar 

Pietropaolo A, Geraghty RM, Veeratterapillay R, Rogers A, Kallidonis P, Villa L, Boeri L, Montanari E, Atis G, Emiliani E, Sener TE, Al Jaafari F, Fitzpatrick J, Shaw M, Harding C, Somani BK (2021) A machine learning predictive model for post-ureteroscopy urosepsis needing intensive care unit admission: a case-control YAU endourology study from nine European centres. J Clin Med 10(17):3888. https://doi.org/10.3390/jcm10173888

Article  PubMed  PubMed Central  Google Scholar 

Pietropaolo A, Hughes T, Mani M, Somani B (2021) Outcomes of ureteroscopy and laser stone fragmentation (URSL) for kidney stone disease (KSD): comparative cohort study using MOSES technology 60 W laser system versus regular holmium 20 W laser. J Clin Med 10(13):2742. https://doi.org/10.3390/jcm10132742

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kronenberg P, Traxer O (2014) In vitro fragmentation efficiency of holmium: yttrium-aluminum-garnet (YAG) laser lithotripsy–a comprehensive study encompassing different frequencies, pulse energies, total power levels and laser fibre diameters. BJU Int 114(2):261–267. https://doi.org/10.1111/bju.12567. (Epub 2014 Apr 16 PMID: 24219145)

Article  PubMed  Google Scholar 

Aldoukhi AH, Hall TL, Ghani KR, Maxwell AD, MacConaghy B, Roberts WW (2018) Caliceal fluid temperature during high-power holmium laser lithotripsy in an in vivo porcine model. J Endourol 32(8):724–729. https://doi.org/10.1089/end.2018.0395

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif