Novel pressure- and temperature-controlled flexible ureteroscope system with a suction ureteral access sheath: a multicenter retrospective feasibility study

Assimos D, Krambeck A, Miller NL et al (2016) Surgical management of stones: American Urological Association/Endourological Society Guideline, Part I. J Urol 196(4):1153–1160. https://doi.org/10.1016/j.juro.2016.05.090

Article  PubMed  Google Scholar 

European Association of U. EAU Guidelines on Urolithiasis (2024)

Pearle MS, Goldfarb DS, Assimos DG (2014) Medical management of kidney stones: AUA Guideline. J Urol 192:316

Article  PubMed  Google Scholar 

Zhong W, Leto G, Wang L, Zeng GH (2015) Systemic inflammatory response syndrome after flexible ureteroscopic lithotripsy: a study of risk factors. J Endourol 29(1):25–28. https://doi.org/10.1089/end.2014.0409

Article  PubMed  Google Scholar 

Guo H-Q, Shi H-L, Li X-G et al (2008) Relationship between the intrapelvic perfusion pressure in minimally invasive percutaneous nephrolithotomy and postoperative recovery. Zhonghua Wai Ke Za Zhi 46(1):52–54

PubMed  Google Scholar 

Corrales M, Panthier F, Solano C et al (2024) Laser safety, warnings, and limits in retrograde intrarenal surgery. Actas Urol Esp (Engl Ed) 48(1):19–24. https://doi.org/10.1016/j.acuroe.2023.06.009

Article  CAS  PubMed  Google Scholar 

Gallegos H, Bravo JC, Sepúlveda F, Astroza GM (2021) Intrarenal temperature measurement associated with holmium laser intracorporeal lithotripsy in an ex vivo model. Cent Eur J Urol 74(4):588–594. https://doi.org/10.5173/ceju.2021.0092

Article  CAS  Google Scholar 

Æsøy MS, Juliebø-Jones P, Beisland C, Ulvik Ø (2024) Temperature measurements during flexible ureteroscopic laser lithotripsy: a prospective clinical trial. J Endourol. https://doi.org/10.1089/end.2023.0660

Article  PubMed  Google Scholar 

Shrestha A, Adhikari B, Shah AK (2023) Does relocation of lower pole stone during retrograde intrarenal surgery improve stone-free rate? A prospective randomized study. J Endourol 37(1):21–27. https://doi.org/10.1089/end.2022.0050

Article  PubMed  Google Scholar 

Gao X, Zhang Z, Li X et al (2022) High stone-free rate immediately after suctioning flexible ureteroscopy with Intelligent pressure-control in treating upper urinary tract calculi. BMC Urol 22(1):180. https://doi.org/10.1186/s12894-022-01126-0

Article  PubMed  PubMed Central  Google Scholar 

Li K, Liao Z, Lin T et al (2018) A novel semirigid ureterorenoscope with vacuum suctioning system for management of single proximal ureteral and renal pelvic stones: an initial experience. J Endourol 32(12):1154–1159. https://doi.org/10.1089/end.2018.0565

Article  PubMed  Google Scholar 

Deng X, Xie D, Huang X et al (2022) Suctioning flexible ureteroscopy with automatic control of renal pelvic pressure versus mini PCNL for the treatment of 2–3-cm kidney stones in patients with a solitary kidney. Urol Int 106(12):1293–1297. https://doi.org/10.1159/000521373

Article  CAS  PubMed  Google Scholar 

Pauchard F, Ventimiglia E, Corrales M, Traxer O (2022) A practical guide for intra-renal temperature and pressure management during Rirs: what is the evidence telling US. J Clin Med 11(12):7. https://doi.org/10.3390/jcm11123429

Article  Google Scholar 

Lee M, Agarwal D, Connors B et al (2022) Determining the threshold of safety for intrarenal pressure during flexible ureteroscopy using an in vivo pig model. J Urol 207(5):E639–E639

Google Scholar 

Xia S-J, Shen Z-J, Shao Y et al (2008) Monitoring of intrarenal pressure during ureteroscopic lithotripsy. Zhonghua Yi Xue Za Zhi 88(38):2675–2678

PubMed  Google Scholar 

Troxel SA, Low RK (2002) Renal intrapelvic pressure during percutaneous nephrolithotomy and its correlation with the development of postoperative fever. J Urol 168(4):1348–1351. https://doi.org/10.1016/s0022-5347(05)64446-1

Article  PubMed  Google Scholar 

Wu C, Hua LX, Zhang JZ et al (2017) Comparison of renal pelvic pressure and postoperative fever incidence between standard- and mini-tract percutaneous nephrolithotomy. Kaohsiung J Med Sci 33(1):36–43. https://doi.org/10.1016/j.kjms.2016.10.012

Article  PubMed  Google Scholar 

Hardy LA, Wilson CR, Irby PB, Fried NM (2014) Thulium fiber laser lithotripsy in an in vitro ureter model. J Biomed Opt 19(12):6. https://doi.org/10.1117/1.Jbo.19.12.128001

Article  Google Scholar 

Wah TM, Irving HC, Gregory W et al (2014) Radiofrequency ablation (RFA) of renal cell carcinoma (RCC): experience in 200 tumo-URS. BJU Int 113(3):416–428. https://doi.org/10.1111/bju.12349

Article  PubMed  Google Scholar 

Okhunov Z, Jiang P, Afyouni AS et al (2021) Caveat emptor: the heat is “on”-an in vivo evaluation of the thulium fiber laser and temperature changes in the porcine kidney during dusting and fragmentation modes. J Endourol 35(11):1716–1722. https://doi.org/10.1089/end.2021.0206

Article  PubMed  Google Scholar 

Æsøy MS, Juliebø-Jones P, Beisland C, Ulvik Ø (2024) Temperature measurements during flexible ureteroscopic laser lithotripsy: a prospective clinical trial. J Endourol 38(4):308–315. https://doi.org/10.1089/end.2023.0660

Article  PubMed  Google Scholar 

Yang J, Li Z, Lai C, Xu K (2024) An in vivo assessment of a novel temperature control flexible ureteroscope system for monitoring and controlling intrarenal temperature during flexible ureteroscopy. Urology. https://doi.org/10.1016/j.urology.2024.07.011

Article  PubMed  PubMed Central  Google Scholar 

van Rhoon GC, Samaras T, Yarmolenko PS et al (2013) CEM43A°C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels? Eur Radiol 23(8):2215–2227. https://doi.org/10.1007/s00330-013-2825-y

Article  PubMed  PubMed Central  Google Scholar 

Wang XK, Jiang ZQ, Tan J et al (2019) Thermal effect of holmium laser lithotripsy under ureteroscopy. Chin Med J 132(16):2004–2007. https://doi.org/10.1097/cm9.0000000000000300

Article  PubMed  PubMed Central  Google Scholar 

Wu Z, Wei J, Sun C et al (2023) Temperature changes of renal calyx during high-power flexible ureteroscopic Moses holmium laser lithotripsy: a case analysis study. Int Urol Nephrol 55(7):1685–1692. https://doi.org/10.1007/s11255-023-03611-3

Article  PubMed  Google Scholar 

Molina WR, Silva IN, da Silva RD et al (2015) Influence of saline on temperature profile of laser lithotripsy activation. J Endourol 29(2):235–239. https://doi.org/10.1089/end.2014.0305

Article  PubMed  PubMed Central  Google Scholar 

Kampinga HH (1993) Thermotolerance in mammalian cells. Protein denaturation and aggregation, and stress proteins. J Cell Sci 104(Pt 1):11–17. https://doi.org/10.1242/jcs.104.1.11

Article  CAS  PubMed  Google Scholar 

Jung H, Osther PJ (2015) Intraluminal pressure profiles during flexible ureterorenoscopy. Springerplus 4:373. https://doi.org/10.1186/s40064-015-1114-4

Article  PubMed  PubMed Central  Google Scholar 

Deng X, Song L, Xie D et al (2016) A novel flexible ureteroscopy with intelligent control of renal pelvic pressure: an initial experience of 93 cases. J Endourol 30(10):1067–1072. https://doi.org/10.1089/end.2015.0770

Article  PubMed  Google Scholar 

Bhojani N, Koo KC, Bensaadi K et al (2023) Retrospective first-in-human use of the LithoVue™ Elite ureteroscope to measure intrarenal pressure. BJU Int 132(6):678–685. https://doi.org/10.1111/bju.16173

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif