D. Suter, G.A. Álvarez, Protecting quantum information against environmental noise. Rev. Mod. Phys. 88, 041001 (2016)
Article ADS MathSciNet Google Scholar
E. Figueroa, F. Vewinger, J. Appel, A.I. Lvovsky, Decoherence of electromagnetically induced transparency in atomic vapor. Opt. Lett. 31, 2625–2627 (2006)
B.-P. Hou, J. Chen, Y.-M. Pan, Decoherence in cross-Kerr nonlinearity based on electromagnetically induced transparency. Eur. Phys. J. D 68, 73 (2014)
B.J. Brown, D. Loss, J.K. Pachos, C.N. Self, J.R. Wootton, Quantum memories at finite temperature. Rev. Mod. Phys. 88, 045005 (2016)
Article ADS MathSciNet Google Scholar
J. Wang, Decoherence effects in an electromagnetically induced transparency and slow light experiment. Phys. Rev. A 81, 033841 (2010)
M. Fleischhauer, A. Imamoglu, J.P. Marangos, Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)
J.P. Marangos, Electromagnetically induced transparency. J. Modern Opt. 45(3), 471–503 (1998)
S.E. Harris, Electromagnetically induced transparency. Phys. Today 50(7), 36 (1997)
S.J. Buckle, S.M. Barnett, P.L. Knight, M.A. Lauder, D.T. Pegg, Atomic interferometers. Opt. Acta Int. J. Opt. 33(9), 1129–1140 (1986)
K.V. Rajitha, T.N. Dey, S. Das, P.K. Jha, Microwave-controlled efficient Raman sub-harmonic generation. Opt. Lett. 40, 2229–2232 (2015)
G.S. Agarwal, T.N. Dey, S. Menon, Knob for changing light propagation from subluminal to superluminal. Phys. Rev. A 64, 053809 (2009)
D. Cheng, C. Liu, S. Gong, Optical bistability via amplitude and phase control of a microwave field. Opt. Commun. 263, 111–115 (2006)
J. Ayyappan, T. Beena, A giant self-Kerr nonlinearity using phase-sensitive excitation in a closed three-level atomic system. Phys. Scr. 97, 085103 (2022)
H. Li, V.A. Sautenkov, Y.V. Rostovtsev, G.R. Welch, P.R. Hemmer, M.O. Scully, Electromagnetically induced transparency controlled by a microwave field. Phys. Rev. A 80, 023820 (2009)
M. Ghosh, A. Karigowda, A. Jayaraman, F. Bretenaker, B.C. Sanders, A. Narayanan, Demonstration of a high-contrast optical switching in an atomic delta system. Phys. B At. Mol. Opt. Phys. 50, 165502 (2017)
K.V. Adwaith, K.N. Pradosh, J.K. Saaswath, F. Bretenaker, A. Narayanan, Microwave controlled ground state coherence in an atom-based optical amplifier. OSA Contin. 4, 702–710 (2021)
A. Karigowda, K.V. Adwaith, P.K. Nayak, S. Sudha, B.C. Sanders, F. Bretenaker, A. Narayanan, Phase-sensitive amplification of an optical field using microwaves. Opt. Exp. 27, 32111–32121 (2019)
J. Xu, F. Wang, Perfect higher-order squeezing via strong nonlinearity in microwave-modified electromagnetically induced transparency. Phys. Rev. A 104, 013706 (2021)
Article ADS MathSciNet Google Scholar
S. Sharma, T.N. Dey, Perfect higher-order squeezing via strong nonlinearity in microwave-modified electromagnetically induced transparency. Phys. Rev. A 96, 033811 (2017)
F. Wang, C. Gou, J. Xu, C. Gong, Hybrid magnon-atom entanglement and magnon blockade via quantum interference. Phys. Rev. A 106, 013705 (2022)
Article ADS MathSciNet Google Scholar
Xiaochi Liu, Y.-N. Lv, S. Kang, C.-L. Zou, J. Duan, N. Ru, J. Qu, Rabi resonance in coherent population trapping: microwave mixing scheme. Opt. Express 29, 2466–2477 (2021)
D.H. Minh, B.N. Huy, Controllable optical switching in a closed-loop three-level lambda system. Phys. Scr. 94, 115510 (2019)
M. Manjappa, S.S. Undurti, A. Karigowda, A. Narayanan, B.C. Sanders, Effects of temperature and ground-state coherence decay on enhancement and amplification in a \(\Delta\) atomic system. Phys. Rev. A 90, 043859 (2014)
J. Han, T. Vogt, W. Li, Spectral shift and dephasing of electromagnetically induced transparency in an interacting Rydberg gas. Phys. Rev. A 94, 043806 (2016)
Y. Sun, Y. Yang, H. Chen, S. Zhu, Dephasing-induced control of interference nature in threelevel electromagnetically induced transparency systems. Sci. Rep. 5, 16370 (2015)
D.A. Steck, https://steck.us/alkalidata/rubidium85numbers.pdf
M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, England, (1997)
D.F. Walls, G.J. Milburn, Quantum Optics (Springer-Verlag, Berlin, (1994)
R.W. Boyd, Nonlinear Optics (Academic, San Diego, (1992)
L. Hao, Y. Jiao, Y. Xue, X. Han, S. Bai, J. Zhao, G. Raithel, Transition from electromagnetically induced transparency to Autler-Townes splitting in cold cesium atoms. New. J. Phys. 20, 073024 (2018)
P.M. Anisimov, J.P. Dowling, B.C. Sanders, Objectively discerning Autler-Townes Splitting from electromagnetically induced transparency. Phys. Rev. Lett. 107, 163604 (2011)
I. Novikova, R.L. Walsworth, Y. Xiao, Electromagnetically induced transparency-based slow and stored light in warm atoms. Laser Photon. Rev. 6, 333–353 (2012)
J.A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, J.P. Shaffer, Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances. Nat. Phys. 8, 819–824 (2012)
X. Liu, Z. Jiang, J. Qu, D. Hou, X. Huang, F. Sun, Microwave magnetic field detection based on Cs vapor cell in free space. Rev. Sci. Instrum. 89, 063104 (2018)
A. Nagel, L. Graf, A. Naumov, E. Mariotti, V. Biancalana, D. Meschede, R. Wynands, Experimental realization of coherent dark-state magnetometers. Europhys. Lett. 44, 31–36 (1998)
留言 (0)