Artificial intelligence in the care of children and adolescents with chronic diseases: a systematic review

Miller RA (1994) Medical diagnostic decision support systems–past, present, and future: a threaded bibliography and brief commentary. J Am Med Inform Assoc 1(1):8–27

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu KH, Beam AL, Kohane IS (2018) Artificial intelligence in healthcare. Nat Biomed Eng 2(10):719–731

Article  PubMed  Google Scholar 

Abbasgholizadeh Rahimi S et al (2021) Application of artificial intelligence in community-based primary health care: systematic scoping review and critical appraisal. J Med Internet Res 23(9):e29839

Article  PubMed  PubMed Central  Google Scholar 

Association of American Medical Colleges (2020) The complexities of physician supply and demand: projections from 2017–2032. https://aamc-black.global.ssl.fastly.net/production/media/filer_public/31/13/3113ee5c-a038-4c16-89af-294a69826650/2019_update_-_the_complexities_of_physician_supply_and_demand_-_projections_from_2017-2032.pdf. Accessed 9 Dec 2024

Shu LQ et al (2019) Application of artificial intelligence in pediatrics: past, present and future. World J Pediatr 15(2):105–108

Article  PubMed  Google Scholar 

Radovic A, Badawy SM (2020) Technology use for adolescent health and wellness. Pediatrics 145(Suppl 2):S186–S194

Article  PubMed  Google Scholar 

Liberati A et al (2009) The PRISMA Statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6(7):e1000100

Article  PubMed  PubMed Central  Google Scholar 

Moola SMZ, Tufanaru C, Aromataris E, Sears K, Sfetcu R, Currie M, Qureshi R, Mattis P, Lisy K, Mu P-F (2020) Chapter 7: systemaic reviews of etiology and risk. In: MZ Aromataris MZE (ed) JBI manual for evidence synthesis. Joanna Briggs Institute. https://doi.org/10.46658/JBIMES-24-06

Aleksovska-Stojkovska L, Loskovska S (2011) Architectural and data model of clinical decision support system for managing asthma in school-aged children. in IEEE international conference on electro information technology

Hussain SA, Sezgin E, Krivchenia K, Luna J, Rust S, Huang Y (2021) A natural language processing pipeline to synthesize patient-generated notes toward improving remote care and chronic disease management: a cystic fibrosis case study. JAMIA Open 4(3)

Sendra S, Parra L, Lloret J, Tomás J (2018) Smart system for children’s chronic illness monitoring. Inf Fusion 40:76–86. https://doi.org/10.1016/j.inffus.2017.06.002

Article  Google Scholar 

Torrent-Fontbona F, Lopez B (2019) Personalized adaptive CBR bolus recommender system for type 1 diabetes. IEEE J Biomed Health Inform 23(1):387–394. https://doi.org/10.1109/JBHI.2018.2813424

Article  PubMed  Google Scholar 

Al-Hyari AY, Al-Taee AM, Al-Taee MA (2013) Clinical decision support system for diagnosis and management of chronic renal failure. In: 2013 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT). https://ieeexplore.ieee.org/document/6716440/. Accessed 9 Dec 2024

Zolnoori M, Zarandi MH, Moin M (2012) Application of intelligent systems in asthma disease: designing a fuzzy rule-based system for evaluating level of asthma exacerbation. J Med Syst 36(4):2071–2083

Article  PubMed  Google Scholar 

Bao S, Liu W, Liu L, Jiang G, Chen H (2022) Analysis of factors related to spiritual psychology and quality of life in patients with inflammatory bowel disease based on artificial intelligence IBD nursing technology. J Healthcare Eng 2022. https://doi.org/10.1155/2022/7702432

Caulley D et al (2023) Objectively quantifying pediatric psychiatric severity using artificial intelligence, voice recognition technology, and universal emotions: pilot study for artificial intelligence-enabled innovation to address youth mental health crisis. JMIR Res Protoc 12:e51912

Article  PubMed  PubMed Central  Google Scholar 

Ramakrishnan K, Balakrishnan V, Ng KS (2021) Using artificial intelligence for diabetes distress detection among the facebook community. In: 2021 International Conference on Computer Science and Engineering (IC2SE). https://ieeexplore.ieee.org/document/9791927/. Accessed 9 Dec 2024

Gaur M, Alambo A, Sain, Kursuncu U, Thirunarayan K, Kavuluru R, Sheth A, Welton R, Pathak J (2019) Knowledge-aware assessment of severity of suicide risk for early intervention, in The World Wide Web Conference, Association for Computing Machinery: San Francisco, CA, USA. p 514–525

Alaa AM, van der Scar M (2019) Attentive state-space modeling of disease progression. In: Advances in neural information processing systems 32 (NeurIPS 2019)

Santori G, Fontana I, Valente U (2007) Application of an artificial neural network model to predict delayed decrease of serum creatinine in pediatric patients after kidney transplantation. Transplant Proc 39(6):1813–1819

Article  CAS  PubMed  Google Scholar 

Kawalec A, et al (2023) Systemic immune inflammation index as a key predictor of dialysis in pediatric chronic kidney disease with the use of random forest classifier. J Clin Med 12(21)

Wu X, Yuan X, Wang W, Liu K, Qin Y, Sun X, Ma W, Zou Y, Zhang H, Zhou X, Wu H, Jiang X, Cai J, Chang W, Zhou S, Song L (2020) Value of a machine learning approach for predicting clinical outcomes in young patients with hypertension. Hypertension 75(5):1271–1278

Article  CAS  PubMed  Google Scholar 

Jung K, Covington S, Sen CK, Januszyk M, Kirsner RS, Gurtner GC, Shah NH (2016) Rapid identification of slow healing wounds. Wound Repair Regen 24(1):181–188

Article  PubMed  PubMed Central  Google Scholar 

Hogan AH, Brimacombe M, Mosha M, Flores G (2022) Comparing artificial intelligence and traditional methods to identify factors associated with pediatric asthma readmission. Acad Pediatr 22(1):55–61

Article  PubMed  Google Scholar 

Kim D, Cho S, Tamil L, Song DJ, Seo S (2020) Predicting asthma attacks: effects of indoor PM concentrations on peak expiratory flow rates of asthmatic children. IEEE Access 8:8791-8797

Yu G, Tabatabaei M, Mezei J, Zhong Q, Chen S, Li Z, Li J, Shu L, Shu Q (2022) Improving chronic disease management for children with knowledge graphs and artificial intelligence. Expert Syst Appl 201. https://doi.org/10.1016/j.eswa.2022.117026

Molteni E, Colombo K, Beretta E, Galbiati S, Santos Canas LD, Modat M, Strazzer S (2019) Comparison of multi-class machine learning methods for the identification of factors most predictive of prognosis in neurobehavioral assessment of pediatric severe disorder of consciousness through LOCFAS scale. In: 2019 41st annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2019:269–272. https://ieeexplore.ieee.org/document/8856880/. Accessed 9 Dec 2024

Herskovits EH, Gerring JP (2003) Application of a data-mining method based on Bayesian networks to lesion-deficit analysis. Neuroimage 19(4):1664–1673

Article  PubMed  Google Scholar 

Bertoncelli CM, Altamura P, Vieira ER, Bertoncelli D, Solla F (2019) Using artificial intelligence to identify factors associated with autism spectrum disorder in adolescents with cerebral palsy. Neuropediatrics 50(3):178–187

Article  PubMed  Google Scholar 

Morse KE, Brown C, Fleming S, Todd I, Powell A, Russell A, Scheinker D, Sutherland SM, Lu J, Watkins B, Shah NH, Pageler NM, Palma JP (2022) Monitoring approaches for a pediatric chronic kidney disease machine learning model. Appl Clin Inform 13(2):431–438

Article  PubMed  PubMed Central  Google Scholar 

Ma J et al (2023) Machine learning models developed and internally validated for predicting chronicity in pediatric immune thrombocytopenia. J Thromb Haemost. https://doi.org/10.1016/j.jtha.2023.12.006

Moreira A et al (2023) Development of a peripheral blood transcriptomic gene signature to predict bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 324(1):L76-l87

Article  CAS  PubMed  Google Scholar 

Szaleniec J, Wiatr M, Szaleniec M, Składzien J, Tomik J, Strek P, Tadeusiewicz R, Przeklasa R (2009) Applicability of artificial neural networks in postoperative hearing improvement prognosis in patients with chronic otitis media. Przegl Lek 66(11):924–929

PubMed  Google Scholar 

Cotugno N, Santilli V, Pascucci GR, Manno EC, De Armas L, Pallikkuth S, Deodati A, Amodio D, Zangari P, Zicari S, Ruggiero A, Fortin M, Bromley C, Pahwa R, Rossi P, Pahwa S, Palma P (2020) Artificial intelligence applied to in vitro gene expression testing (IVIGET) to predict trivalent inactivated influenza vaccine immunogenicity in HIV infected children. Front Immunol 11. https://doi.org/10.3389/fimmu.2020.559590

Bhat CS, Chopra M, Andronikou S, Paul S, Wener-Fligner Z, Merkoulovitch A, Holjar-Erlic I, Menegotto F, Simpson E, Grier D, Ramanan AV (2020) Artificial intelligence for interpretation of segments of whole body MRI in CNO: pilot study comparing radiologists versus machine learning algorithm. Pediatr Rheumatol Online J 18(1):47

Article  PubMed  PubMed Central  Google Scholar 

Gao S, Tai J, Ge W, Li X, Wang Q, Lei Y, Wu Y, Zheng L, Guo Y, Xu Z (2020) Facial feature as predictor for early-persistence OSAS after adenotonsillectomy in children with moderate to severe OSAS. IT Professional 22(4):35–42

Article  Google Scholar 

Austin T, Iliffe S, Leaning M, Modell M (1996) A prototype computer decision support system for the management of asthma. J Med Syst 20(1):45–55

Article  CAS  PubMed  Google Scholar 

Bi J, Abraham A (2012) An intelligent web-based decision support tool for enhancing asthma guideline adherence. In: IHI'12 - proceedings of the 2nd ACM SIGHIT international health informatics symposium. https://doi.org/10.1145/2110363.2110373

Niel O, Bastard P, Boussard C, Hogan J, Kwon T, Deschênes G (2018) Artificial intelligence outperforms experienced nephrologists to assess dry weight in pediatric patients on chronic hemodialysis. Pediatr Nephrol 33(10):1799–1803

Article  PubMed  Google Scholar 

Gosine RG, Harwin WS, Furby LJ, Jackson RD (1989) An intelligent end-effector for a rehabilitation robot. J Med Eng Technol 13(1–2):37–43

Article  CAS  PubMed  Google Scholar 

Al-Taee MA, Kapoor R, Garrett C, Choudhary P (2016) Acceptability of robot assistant in management of type 1 diabetes in children. Diabetes Technol Ther 18(9):551–554

Article  CAS  PubMed  Google Scholar 

Neerincx A, Sacchitelli F, Kaptein R, van der Pal S, Oleari E, Neerincx MA (2016) Child’s culture-related experiences with a social robot at diabetes camps, in The Eleventh ACM/IEEE International Conference on Human Robot Interaction. IEEE Press: Christchurch, New Zealand. p 485–486

Massey CJ et al (2023) Otolaryngologist perceptions of AI-based sinus CT interpretation. Am J Otolaryngol 44(5):103932

Article  PubMed  Google Scholar 

Kloppel S et al (2015) Applying automated MR-based diagnostic methods to the memory clinic: a prospective study. J Alzheimers Dis 47(4):939–954

Article  PubMed  PubMed Central  Google Scholar 

World Health Organization (2022) World mental health report: transforming mental health for all. World Health Organization, Geneva

Brady AM, Deighton J, Stansfeld S (2021) Chronic illness in childhood and early adolescence: a longitudinal exploration of co-occurring mental illness. Dev Psychopathol 33(3):885–898

留言 (0)

沒有登入
gif