Trypanosomatid DRBD9s are likely to be eIF4B orthologues

Akash S, Abdelkrim G, Bayil I, et al. 2023 Antimalarial drug discovery against malaria parasites through haplopine modification: An advanced computational approach. J. Cell. Mol. Med. 27 3168–3188

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altmann M, Muller PP, Wittmer B, et al. 1993 A Saccharomyces cerevisiaehomologue of mammalian translation initiation factor 4B contributes to RNA helicase activity. EMBO J. 12 3997–4003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altmann M, Wittmer B, Methot N, et al. 1995 The Saccharomyces cerevisiae translation initiation factor Tif3 and its mammalian homologue, eIF-4B, have RNA annealing activity. EMBO J. 14 3820–3827

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andreou AZ, Harms U and Klostermeier D 2017 eIF4B stimulates eIF4A ATPase and unwinding activities by direct interaction through its 7-repeats region. RNA Biol. 14 113–123

Article  PubMed  Google Scholar 

Bayfield MA, Kaiser TE, Intine RV, et al. 2007 Conservation of a masked nuclear export activity of La proteins and its effects on tRNA maturation. Mol. Cell. Biol. 27 3303–3312

Article  CAS  PubMed  PubMed Central  Google Scholar 

Behrens RT, Aligeti M, Pocock GM, et al. 2017 Nuclear export signal masking regulates HIV-1 Rev trafficking and viral RNA nuclear export. J. Virol. 91

Bhattacharya A, Corbeil A, do Monte-Neto RL, et al. 2020 Of drugs and trypanosomatids: new tools and knowledge to reduce bottlenecks in drug discovery. Genes 11 722

Coppolecchia R, Buser P, Stotz A, et al. 1993 A new yeast translation initiation factor suppresses a mutation in the eIF-4A RNA helicase. EMBO J. 12 4005–4011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cordin O and Beggs JD 2013 RNA helicases in splicing. RNA Biol. 10 83–95

Article  CAS  PubMed  PubMed Central  Google Scholar 

Craig E, Zhang ZK, Davies KP, et al. 2002 A masked NES in INI1/hSNF5 mediates hCRM1-dependent nuclear export: implications for tumorigenesis. EMBO J. 21 31–42

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dadwal A and Das S 2023 Architecture, domain organization, and functional signatures of trypanosomatid keIF4A1s and Plasmodium peIF4A1s suggest conserved functions. J. Biosci. 48 44

Article  CAS  PubMed  Google Scholar 

Das S 2021 Taking a re-look at cap-binding signatures of the mRNA cap-binding protein eIF4E orthologues in trypanosomatids. Mol. Cell. Biochem. 476 1037–1049

Article  CAS  PubMed  Google Scholar 

Das S 2022 Analysis of domain organization and functional signatures of trypanosomatid keIF4Gs. Mol. Cell. Biochem. 477 2415–2431

Article  CAS  PubMed  Google Scholar 

Dhalia R, Reis CR, Freire ER, et al. 2005 Translation initiation in Leishmania major: characterisation of multiple eIF4F subunit homologues. Mol. Biochem. Parasitol. 140 23–41

Article  CAS  PubMed  Google Scholar 

Dmitriev SE, Terenin IM, Dunaevsky YE, et al. 2003 Assembly of 48S translation initiation complexes from purified components with mRNAs that have some base pairing within their 5′ untranslated regions. Mol. Cell. Biol. 23 8925–8933

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fleming K, Ghuman J, Yuan X, et al. 2003 Solution structure and RNA interactions of the RNA recognition motif from eukaryotic translation initiation factor 4B. Biochemistry 42 8966–8975

Article  CAS  PubMed  Google Scholar 

Freire ER, Dhalia R, Moura DM, et al. 2011 The four trypanosomatid eIF4E homologues fall into two separate groups, with distinct features in primary sequence and biological properties. Mol. Biochem. Parasitol. 176 25–36

Article  CAS  PubMed  Google Scholar 

Freire ER, Malvezzi AM, Vashisht AA, et al. 2014a Trypanosoma brucei translation initiation factor homolog EIF4E6 forms a tripartite cytosolic complex with EIF4G5 and a capping enzyme homolog. Eukaryot. Cell 13 896–908

Article  PubMed  PubMed Central  Google Scholar 

Freire ER, Vashisht AA, Malvezzi AM, et al. 2014b eIF4F-like complexes formed by cap-binding homolog TbEIF4E5 with TbEIF4G1 or TbEIF4G2 are implicated in post-transcriptional regulation in Trypanosoma brucei. RNA 20 1272–1286

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gingras AC, Raught B and Sonenberg N 2001 Regulation of translation initiation by FRAP/mTOR. Genes Dev. 15 807–826

Article  CAS  PubMed  Google Scholar 

Grifo JA, Abramson RD, Satler CA, et al. 1984 RNA-stimulated ATPase activity of eukaryotic initiation factors. J. Biol. Chem. 259 8648–8654

Article  CAS  PubMed  Google Scholar 

Jaramillo M, Browning K, Dever TE, et al. 1990 Translation initiation factors that function as RNA helicases from mammals, plants and yeast. Biochim. Biophys. Acta 1050 134–139

Article  CAS  PubMed  Google Scholar 

Jeyasekharan AD, Liu Y, Hattori H, et al. 2013 A cancer-associated BRCA2 mutation reveals masked nuclear export signals controlling localization. Nat. Struct. Mol. Biol. 20 1191–1198

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jurrus E, Engel D, Star K, et al. 2018 Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27 112–128

Article  CAS  PubMed  Google Scholar 

Lewdorowicz M, Yoffe Y, Zuberek J, et al. 2004 Chemical synthesis and binding activity of the trypanosomatid cap-4 structure. RNA 10 1469–1478

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meleppattu S, Arthanari H, Zinoviev A, et al. 2018 Structural basis for LeishIF4E-1 modulation by an interacting protein in the human parasite Leishmania major. Nucleic Acids Res. 46 3791–3801

Article  CAS  PubMed  PubMed Central  Google Scholar 

Methot N, Song MS and Sonenberg N 1996 A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3. Mol. Cell. Biol. 16 5328–5334

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mirdita M, Schutze K, Moriwaki Y, et al. 2022 ColabFold: making protein folding accessible to all. Nat. Methods 19 679–682

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitchell SF, Walker SE, Algire MA, et al. 2010 The 5’-7-methylguanosine cap on eukaryotic mRNAs serves both to stimulate canonical translation initiation and to block an alternative pathway. Mol. Cell 39 950–962

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mittal L, Srivastava M, Kumari A, et al. 2021 Interplay among structural stability, plasticity, and energetics determined by conformational attuning of flexible loops in PD-1. J. Chem. Inf. Model. 61 358–384

Article  CAS  PubMed  Google Scholar 

Moura DM, Reis CR, Xavier CC, et al. 2015 Two related trypanosomatid eIF4G homologues have functional differences compatible with distinct roles during translation initiation. RNA Biol. 12 305–319

Article  PubMed 

留言 (0)

沒有登入
gif