Paolicelli, R. C. et al. Microglia states and nomenclature: a field at its crossroads. Neuron 110, 3458–3483 (2022).
Article CAS PubMed PubMed Central Google Scholar
Eyo, U. & Molofsky, A. V. Defining microglial–synapse interactions. Science 381, 1155–1156 (2023).
Article CAS PubMed Google Scholar
Boivin, J. R. & Nedivi, E. Functional implications of inhibitory synapse placement on signal processing in pyramidal neuron dendrites. Curr. Opin. Neurobiol. 51, 16–22 (2018).
Article CAS PubMed PubMed Central Google Scholar
Mordelt, A. & de Witte, L. D. Microglia-mediated synaptic pruning as a key deficit in neurodevelopmental disorders: hype or hope? Curr. Opin. Neurobiol. 79, 102674 (2023).
Article CAS PubMed Google Scholar
Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008).
Monday, H. R., Younts, T. J. & Castillo, P. E. Long-term plasticity of neurotransmitter release: emerging mechanisms and contributions to brain function and disease. Annu. Rev. Neurosci. 41, 299–322 (2018).
Article CAS PubMed PubMed Central Google Scholar
Lisman, J. Glutamatergic synapses are structurally and biochemically complex because of multiple plasticity processes: long-term potentiation, long-term depression, short-term potentiation and scaling. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160260 (2017).
Article PubMed PubMed Central Google Scholar
Turrigiano, G. G. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135, 422–435 (2008).
Article CAS PubMed PubMed Central Google Scholar
Yuste, R. & Bonhoeffer, T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu. Rev. Neurosci. 24, 1071–1089 (2001).
Article CAS PubMed Google Scholar
Kasai, H., Ziv, N. E., Okazaki, H., Yagishita, S. & Toyoizumi, T. Spine dynamics in the brain, mental disorders and artificial neural networks. Nat. Rev. Neurosci. 22, 407–422 (2021).
Article CAS PubMed Google Scholar
Nagappan-Chettiar, S., Yasuda, M., Johnson-Venkatesh, E. M. & Umemori, H. The molecular signals that regulate activity-dependent synapse refinement in the brain. Curr. Opin. Neurobiol. 79, 102692 (2023).
Article CAS PubMed PubMed Central Google Scholar
Yasuda, M., Nagappan-Chettiar, S., Johnson-Venkatesh, E. M. & Umemori, H. An activity-dependent determinant of synapse elimination in the mammalian brain. Neuron 109, 1333–1349 (2021).
Article CAS PubMed PubMed Central Google Scholar
Papa, M. & Segal, M. Morphological plasticity in dendritic spines of cultured hippocampal neurons. Neuroscience 71, 1005–1011 (1996).
Article CAS PubMed Google Scholar
Henson, M. A., Tucker, C. J., Zhao, M. & Dudek, S. M. Long-term depression-associated signaling is required for an in vitro model of NMDA receptor-dependent synapse pruning. Neurobiol. Learn. Mem. 138, 39–53 (2017).
Article CAS PubMed Google Scholar
He, H., Shen, W., Zheng, L., Guo, X. & Cline, H. T. Excitatory synaptic dysfunction cell-autonomously decreases inhibitory inputs and disrupts structural and functional plasticity. Nat. Commun. 9, 2893 (2018).
Article PubMed PubMed Central Google Scholar
Lu, W., Bushong, E. A., Shih, T. P., Ellisman, M. H. & Nicoll, R. A. The cell-autonomous role of excitatory synaptic transmission in the regulation of neuronal structure and function. Neuron 78, 433–439 (2013).
Article CAS PubMed PubMed Central Google Scholar
Blackman, M. P., Djukic, B., Nelson, S. B. & Turrigiano, G. G. A critical and cell-autonomous role for MeCP2 in synaptic scaling up. J. Neurosci. 32, 13529–13536 (2012).
Article CAS PubMed PubMed Central Google Scholar
Chang, C.-W., Wilkerson, J. R., Hale, C. F., Gibson, J. R. & Huber, K. M. Distinct stages of synapse elimination are induced by burst firing of CA1 neurons and differentially require MEF2A/D. eLife 6, e26278 (2017).
Article PubMed PubMed Central Google Scholar
Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).
Article CAS PubMed Google Scholar
Xu, R. et al. Human iPSC-derived mature microglia retain their identity and functionally integrate in the chimeric mouse brain. Nat. Commun. 11, 1577 (2020).
Article CAS PubMed PubMed Central Google Scholar
Xu, R. et al. Developing human pluripotent stem cell-based cerebral organoids with a controllable microglia ratio for modeling brain development and pathology. Stem Cell Reports 16, 1923–1937 (2021).
Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).
Article CAS PubMed PubMed Central Google Scholar
Gottfried, E. et al. Expression of CD68 in non-myeloid cell types. Scand. J. Immunol. 67, 453–463 (2008).
Article CAS PubMed Google Scholar
Stillman, J. M. et al. Lipofuscin-like autofluorescence within microglia and its impact on studying microglial engulfment. Nat. Commun. 14, 7060 (2023).
Article CAS PubMed PubMed Central Google Scholar
Burns, J. C. et al. Differential accumulation of storage bodies with aging defines discrete subsets of microglia in the healthy brain. eLife 9, e57495 (2020).
Article CAS PubMed PubMed Central Google Scholar
Scott-Hewitt, N. et al. Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia. EMBO J. 39, e105380 (2020).
Article CAS PubMed PubMed Central Google Scholar
Tremblay, M.-È., Lowery, R. L. & Majewska, A. K. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 8, e1000527 (2010).
Article PubMed PubMed Central Google Scholar
Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S. & Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29, 3974–3980 (2009).
Article CAS PubMed PubMed Central Google Scholar
Pfeiffer, T., Avignone, E. & Nägerl, U. V. Induction of hippocampal long-term potentiation increases the morphological dynamics of microglial processes and prolongs their contacts with dendritic spines. Sci. Rep. 6, 32422 (2016).
Article CAS PubMed PubMed Central Google Scholar
Miyamoto, A. et al. Microglia contact induces synapse formation in developing somatosensory cortex. Nat. Commun. 7, 12540 (2016).
留言 (0)