Metabolic rearrangement enables adaptation of microbial growth rate to temperature shifts

Zhang, Y. & Gross, C. A. Cold shock response in bacteria. Annu. Rev. Genet. 55, 377–400 (2021).

Article  CAS  PubMed  Google Scholar 

Richter, K., Haslbeck, M. & Buchner, J. The heat shock response: life on the verge of death. Mol. Cell 40, 253–266 (2010).

Article  CAS  PubMed  Google Scholar 

Barber, M. A. The rate of multiplication of Bacillus coli at different temperatures. J. Infect. Dis. 5, 379–400 (1908).

Article  Google Scholar 

Mohr, P. W. & Krawiec, S. Temperature characteristics and Arrhenius plots for nominal psychrophiles, mesophiles and thermophiles. J. Gen. Microbiol. 121, 311–317 (1980).

CAS  PubMed  Google Scholar 

Herendeen, S. L., VanBogelen, R. A. & Neidhardt, F. C. Levels of major proteins of Escherichia coli during growth at different temperatures. J. Bacteriol. 139, 185–194 (1979).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Knapp, B. D. & Huang, K. C. The effects of temperature on cellular physiology. Annu. Rev. Biophys. 51, 499–526 (2022).

Article  CAS  PubMed  Google Scholar 

Chen, K. et al. Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation. Proc. Natl Acad. Sci. USA 114, 11548–11553 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Phillips, R., Kondev, J. & Theriot, J. Physical Biology of the Cell (Garland Science, 2009).

Hinshelwood, C. N. On the chemical kinetics of autosynthetic systems. J. Chem. Soc. (Resumed) 1952, 745–755 (1952).

Iyer-Biswas, S. et al. Scaling laws governing stochastic growth and division of single bacterial cells. Proc. Natl Acad. Sci. USA 111, 15912–15917 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elias, M., Wieczorek, G., Rosenne, S. & Tawfik, D. S. The universality of enzymatic rate-temperature dependency. Trends Biochem. Sci. 39, 1–7 (2014).

Article  CAS  PubMed  Google Scholar 

Dill, K. A., Ghosh, K. & Schmit, J. D. Physical limits of cells and proteomes. Proc. Natl Acad. Sci. USA 108, 17876–17882 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lemaux, P. G., Herendeen, S. L., Bloch, P. L. & Neidhardt, F. C. Transient rates of synthesis of individual polypeptides in E. coli following temperature shifts. Cell 13, 427–434 (1978).

Article  CAS  PubMed  Google Scholar 

Gadgil, M., Kapur, V. & Hu, W. S. Transcriptional response of Escherichia coli to temperature shift. Biotechnol. Prog. 21, 689–699 (2005).

Article  CAS  PubMed  Google Scholar 

Tagkopoulos, I., Liu, Y. C. & Tavazoie, S. Predictive behavior within microbial genetic networks. Science 320, 1313–1317 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, Y. N., Kusukawa, N., Erickson, J. W., Gross, C. A. & Yura, T. Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor sigma 32. J. Bacteriol. 170, 3640–3649 (1988).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chohji, T., Sawada, T. & Kuno, S. Effects of temperature shift on growth rate of Escherichia coli BB at lower glucose concentration. Biotechnol. Bioeng. 25, 2991–3003 (1983).

Article  CAS  PubMed  Google Scholar 

Sinensky, M. Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc. Natl Acad. Sci. USA 71, 522–525 (1974).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Budin, I. et al. Viscous control of cellular respiration by membrane lipid composition. Science 362, 1186–1189 (2018).

Article  CAS  PubMed  Google Scholar 

Scott, M., Klumpp, S., Mateescu, E. M. & Hwa, T. Emergence of robust growth laws from optimal regulation of ribosome synthesis. Mol. Syst. Biol. 10, 747 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Bremer, H. & Dennis, P. P. Modulation of chemical composition and other parameters of the cell at different exponential growth rates. EcoSal Plus https://doi.org/10.1128/ecosal.5.2.3 (2008).

Belliveau, N. M. et al. Fundamental limits on the rate of bacterial growth and their influence on proteomic composition. Cell Syst. 12, 924–944.e2 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zaritsky, A. Effects of growth temperature on ribosomes and other physiological properties of Escherichia coli. J. Bacteriol. 151, 485–486 (1982).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ram, J. L., Ritchie, R. P., Fang, J., Gonzales, F. S. & Selegean, J. P. Sequence-based source tracking of Escherichia coli based on genetic diversity of beta-glucuronidase. J. Environ. Qual. 33, 1024–1032 (2004).

Article  CAS  PubMed  Google Scholar 

Ram, J. L. et al. Identification of pets and raccoons as sources of bacterial contamination of urban storm sewers using a sequence-based bacterial source tracking method. Water Res. 41, 3605–3614 (2007).

Article  CAS  PubMed  Google Scholar 

Arcus, V. L. & Mulholland, A. J. Temperature, dynamics, and enzyme-catalyzed reaction rates. Annu. Rev. Biophys. 49, 163–180 (2020).

Article  CAS  PubMed  Google Scholar 

Nguyen, V. et al. Evolutionary drivers of thermoadaptation in enzyme catalysis. Science 355, 289–294 (2017).

Article  CAS  PubMed  Google Scholar 

Atolia, E. et al. Environmental and physiological factors affecting high-throughput measurements of bacterial growth. mBio 11, e01378-20 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Knapp, B. D., Zhu, L. & Huang, K. C. SiCTeC: an inexpensive, easily assembled Peltier device for rapid temperature shifting during single-cell imaging. PLoS Biol. 18, e3000786 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cashel, M. & Gallant, J. Two compounds implicated in the function of the RC gene of Escherichia coli. Nature 221, 838–841 (1969).

Article  CAS  PubMed  Google Scholar 

Irving, S. E., Choudhury, N. R. & Corrigan, R. M. The stringent response and physiological roles of (pp)pGpp in bacteria. Nat. Rev. Microbiol. 19, 256–271 (2021).

Article  CAS  PubMed  Google Scholar 

Mackow, E. R. & Chang, F. N. Correlation between RNA synthesis and ppGpp content in Escherichia coli during temperature shifts. Mol. Gen. Genet. 192, 5–9 (1983).

Article  CAS  PubMed  Google Scholar 

Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z. & Hwa, T. Interdependence of cell growth and gene expression: origins and consequences. Science 330, 1099–1102 (2010).

Article  CAS  PubMed  Google Scholar 

Maitra, A. &a

留言 (0)

沒有登入
gif