Silva LHD, Lima E, Miranda RBP, Favero SS, Lohbauer U, Cesar PF. Dental ceramics: a review of new materials and processing methods. Braz Oral Res. 2017. https://doi.org/10.1590/1807-3107BOR-2017.vol31.0058.
Papadiochou S, Pissiotis AL. Marginal adaptation and CAD-CAM technology: a systematic review of restorative material and fabrication techniques. J Prosthet Dent. 2018. https://doi.org/10.1016/j.prosdent.2017.07.001.
Kim KH, Loch C, Waddell JN, Tompkins G, Schwass D. Surface characteristics and biofilm development on selected dental ceramic materials. Int J Dent. 2017. https://doi.org/10.1155/2017/7627945.
Article PubMed PubMed Central Google Scholar
Kreve S, Dos Reis AC. Effect of surface properties of ceramic materials on bacterial adhesion: a systematic review. J Esthet Restor Dent. 2022. https://doi.org/10.1111/jerd.12799.
Fasbinder DJ, Neiva GF. Surface evaluation of polishing techniques for new resilient CAD/CAM restorative materials. J Esthet Restor Dent. 2016. https://doi.org/10.1111/jerd.12174.
Sagsoz O, Demirci T, Demirci G, Sagsoz NP, Yildiz M. The effects of different polishing techniques on the staining resistance of CAD/CAM resin-ceramics. J Adv Prosthodont. 2016. https://doi.org/10.4047/jap.2016.8.6.417.
Article PubMed PubMed Central Google Scholar
Imirzalioglu P, Karacaer O, Yilmaz B, Ozmen MI. Color stability of denture acrylic resins and a soft lining material against tea, coffee, and nicotine. J Prosthodont. 2010. https://doi.org/10.1111/j.1532-849X.2009.00535.x.
Motro PF, Kursoglu P, Kazazoglu E. Effects of different surface treatments on stainability of ceramics. J Prosthet Dent. 2012. https://doi.org/10.1016/S0022-3913(12)60168-1.
Fotiadou C, Manhart J, Diegritz C, Folwaczny M, Hickel R, Frasheri I. Longevity of lithium disilicate indirect restorations in posterior teeth prepared by undergraduate students: A retrospective study up to 85 years. J Dent. 2021. https://doi.org/10.1016/j.jdent.2020.103569.
Al-Haj Husain N, Özcan M, Molinero-Mourelle P, Joda T. Clinical performance of partial and full-coverage fixed dental restorations fabricated from hybrid polymer and ceramic CAD/CAM materials: a systematic review and meta-analysis. J Clin Med. 2020. https://doi.org/10.3390/jcm9072107.
Article PubMed PubMed Central Google Scholar
Kreth J, Merritt J, Pfeifer CS, Khajotia S, Ferracane JL. Interaction between the Oral Microbiome and dental composite biomaterials: where we are and where we should go. J Dent Res. 2020. https://doi.org/10.1177/0022034520927690.
Article PubMed PubMed Central Google Scholar
Sarikaya I, Güler AU. Effects of different polishing techniques on the surface roughness of dental porcelains. J Appl Oral Sci. 2010. https://doi.org/10.1590/S1678-77572010000100004.
Article PubMed PubMed Central Google Scholar
Oh GJ, Kim JW, Ji MK, Yim EK, Vu VT, Kang BM, Park SW, Yang HS, Moon BK, Ban JS. Antibacterial activity and fibroblast cell viability of zirconia coated with glass ceramic containing Ag and NaF nanoparticles. J Nanosci Nanotechnol. 2019. https://doi.org/10.1166/jnn.2019.15914.
Tavassoli Hojati S, Alaghemand H, Hamze F, Babaki FA, Rajab-Nia R, Rezvani MB, Kaviani M, Atai M. Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dent Mater. 2013. https://doi.org/10.1016/j.dental.2013.03.011.
Ai M, Du Z, Zhu S, Geng H, Zhang X, Cai Q, Yang X. Composite resin reinforced with silver nanoparticles-laden hydroxyapatite nanowires for dental application. Dent Mater. 2017. https://doi.org/10.1016/j.dental.2016.09.038.
Ferrando-Magraner E, Bellot-Arcís C, Paredes-Gallardo V, et al. Antibacterial properties of nanoparticles in dental restorative materials A systematic review and meta-analysis. Medicina. 2020. https://doi.org/10.3390/medicina56020055.
Article PubMed PubMed Central Google Scholar
Baig N, Kammakakam I, Falath W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater Adv. 2021. https://doi.org/10.1039/D0MA00807A.
Jafari S, Mahyad B, Hashemzadeh H, Janfaza S, Gholikhani T, Tayebi L. Biomedical applications of TiO2 nanostructures: recent advances. Int J Nanomedicine. 2020. https://doi.org/10.2147/IJN.S249441.
Article PubMed PubMed Central Google Scholar
Meng X, Banis MN, Geng D, Li X, Zhang Y, Li R, Abou-Rachid H, Sun X. Controllable atomic layer deposition of one-dimensional nanotubular TiO2. Appl Surf Sci. 2013. https://doi.org/10.1016/j.apsusc.2012.11.116.
Cibim DD, Saito MT, Giovani PA, Borges FS, Pecorari VGA, Gomes OP, Lisboa-Filho PN, Nociti-Junior FH, Puppin-Rontani RM, Kantovitz KR. Novel nanotechnology of TiO2 improves physical-chemical and biological properties of glass ionomer cement. Int J Biomater. 2017. https://doi.org/10.1155/2017/7123919.
Article PubMed PubMed Central Google Scholar
Kantovitz KR, Fernandes FP, Feitosa IV, Lazzarini MO, Denucci GC, Gomes OP, Giovani PA, Moreira KMS, Pecorari VGA, Borges AFS, Nociti-Junior FH, Basting RT, Lisboa-Filho PN, Puppin-Rontani RM. TiO2 nanotubes improve physico-mechanical properties of glass ionomer cement. Dent Mater. 2020. https://doi.org/10.1016/j.dental.2020.01.018.
Abdulrazzaq Naji S, Jafarzadeh Kashi TS, Pourhajibagher M, Behroozibakhsh M, Masaeli R, Bahador A. Evaluation of antimicrobial properties of conventional poly(methyl methacrylate) denture base resin materials containing hydrothermally synthesised anatase TiO2 nanotubes against cariogenic bacteria and candida albicans. Iran J Pharm Res. 2018;17(Suppl2):161–72.
PubMed PubMed Central Google Scholar
Liou JW, Chang HH. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria. Arch Immunol Ther Exp (Warsz). 2012. https://doi.org/10.1007/s00005-012-0178-x.
Araújo IJS, Ricardo MG, Gomes OP, et al. Titanium dioxide nanotubes added to glass ionomer cements affect S. mutans viability and mechanisms of virulence. Braz Oral Res. 2021. https://doi.org/10.1590/1807-3107bor-2021.vol35.0062.
Arruda LB, Santos CM, Orlandi MO, Schreiner WH, Lisboa-Filho PN. Formation and evolution of TiO2 nanotubes in alkaline synthesis. Ceram Inter. 2015. https://doi.org/10.1016/j.ceramint.2014.10.113.
Paravina RD, Ghinea R, Herrera LJ, Bona AD, Igiel C, Linninger M, Sakai M, Takahashi H, Tashkandi E, Perez MM. Color difference thresholds in dentistry. J Esthet Restor Dent. 2015. https://doi.org/10.1111/jerd.12149.
Arruda LB, Santos CM, Orlandi MO, Schreiner WH, Lisboa-Filho PN. Formation and evolution of TiO2 nanotubes in alkaline synthesis. Ceram Intern. 2015. https://doi.org/10.1016/j.ceramint.2014.10.113.
Jones CS, Billington RW, Pearson GJ. The in vivo perception of roughness of restorations. Br Dent J. 2004. https://doi.org/10.1038/sj.bdj.4810881.
Bollenl CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater. 1997. https://doi.org/10.1016/S0109-5641(97)80038-3.
Dos Santos AF, Sandes de Lucena F, Sanches Borges AF, Lisboa-Filho PN, Furuse AY. Incorporation of TiO2 nanotubes in a polycrystalline zirconia: Synthesis of nanotubes, surface characterization, and bond strength. J Prosthet Dent. 2018. https://doi.org/10.1016/j.prosdent.2017.10.027.
Carp O, Huisman CL, Reller A. Photoinduced reactivity of titanium dioxide. Prog Solid State Ch. 2004. https://doi.org/10.1016/j.progsolidstchem.2004.08.001.
Liou JW, Chang HH. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocat
留言 (0)