TiO2 nanotubes incorporated into a glaze-coating ceramic: surface roughness, color, and antibiofilm activity

Silva LHD, Lima E, Miranda RBP, Favero SS, Lohbauer U, Cesar PF. Dental ceramics: a review of new materials and processing methods. Braz Oral Res. 2017. https://doi.org/10.1590/1807-3107BOR-2017.vol31.0058.

Article  PubMed  Google Scholar 

Papadiochou S, Pissiotis AL. Marginal adaptation and CAD-CAM technology: a systematic review of restorative material and fabrication techniques. J Prosthet Dent. 2018. https://doi.org/10.1016/j.prosdent.2017.07.001.

Article  PubMed  Google Scholar 

Kim KH, Loch C, Waddell JN, Tompkins G, Schwass D. Surface characteristics and biofilm development on selected dental ceramic materials. Int J Dent. 2017. https://doi.org/10.1155/2017/7627945.

Article  PubMed  PubMed Central  Google Scholar 

Kreve S, Dos Reis AC. Effect of surface properties of ceramic materials on bacterial adhesion: a systematic review. J Esthet Restor Dent. 2022. https://doi.org/10.1111/jerd.12799.

Article  PubMed  Google Scholar 

Fasbinder DJ, Neiva GF. Surface evaluation of polishing techniques for new resilient CAD/CAM restorative materials. J Esthet Restor Dent. 2016. https://doi.org/10.1111/jerd.12174.

Article  PubMed  Google Scholar 

Sagsoz O, Demirci T, Demirci G, Sagsoz NP, Yildiz M. The effects of different polishing techniques on the staining resistance of CAD/CAM resin-ceramics. J Adv Prosthodont. 2016. https://doi.org/10.4047/jap.2016.8.6.417.

Article  PubMed  PubMed Central  Google Scholar 

Imirzalioglu P, Karacaer O, Yilmaz B, Ozmen MI. Color stability of denture acrylic resins and a soft lining material against tea, coffee, and nicotine. J Prosthodont. 2010. https://doi.org/10.1111/j.1532-849X.2009.00535.x.

Article  PubMed  Google Scholar 

Motro PF, Kursoglu P, Kazazoglu E. Effects of different surface treatments on stainability of ceramics. J Prosthet Dent. 2012. https://doi.org/10.1016/S0022-3913(12)60168-1.

Article  PubMed  Google Scholar 

Fotiadou C, Manhart J, Diegritz C, Folwaczny M, Hickel R, Frasheri I. Longevity of lithium disilicate indirect restorations in posterior teeth prepared by undergraduate students: A retrospective study up to 85 years. J Dent. 2021. https://doi.org/10.1016/j.jdent.2020.103569.

Article  PubMed  Google Scholar 

Al-Haj Husain N, Özcan M, Molinero-Mourelle P, Joda T. Clinical performance of partial and full-coverage fixed dental restorations fabricated from hybrid polymer and ceramic CAD/CAM materials: a systematic review and meta-analysis. J Clin Med. 2020. https://doi.org/10.3390/jcm9072107.

Article  PubMed  PubMed Central  Google Scholar 

Kreth J, Merritt J, Pfeifer CS, Khajotia S, Ferracane JL. Interaction between the Oral Microbiome and dental composite biomaterials: where we are and where we should go. J Dent Res. 2020. https://doi.org/10.1177/0022034520927690.

Article  PubMed  PubMed Central  Google Scholar 

Sarikaya I, Güler AU. Effects of different polishing techniques on the surface roughness of dental porcelains. J Appl Oral Sci. 2010. https://doi.org/10.1590/S1678-77572010000100004.

Article  PubMed  PubMed Central  Google Scholar 

Oh GJ, Kim JW, Ji MK, Yim EK, Vu VT, Kang BM, Park SW, Yang HS, Moon BK, Ban JS. Antibacterial activity and fibroblast cell viability of zirconia coated with glass ceramic containing Ag and NaF nanoparticles. J Nanosci Nanotechnol. 2019. https://doi.org/10.1166/jnn.2019.15914.

Article  PubMed  Google Scholar 

Tavassoli Hojati S, Alaghemand H, Hamze F, Babaki FA, Rajab-Nia R, Rezvani MB, Kaviani M, Atai M. Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dent Mater. 2013. https://doi.org/10.1016/j.dental.2013.03.011.

Article  PubMed  Google Scholar 

Ai M, Du Z, Zhu S, Geng H, Zhang X, Cai Q, Yang X. Composite resin reinforced with silver nanoparticles-laden hydroxyapatite nanowires for dental application. Dent Mater. 2017. https://doi.org/10.1016/j.dental.2016.09.038.

Article  PubMed  Google Scholar 

Ferrando-Magraner E, Bellot-Arcís C, Paredes-Gallardo V, et al. Antibacterial properties of nanoparticles in dental restorative materials A systematic review and meta-analysis. Medicina. 2020. https://doi.org/10.3390/medicina56020055.

Article  PubMed  PubMed Central  Google Scholar 

Baig N, Kammakakam I, Falath W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater Adv. 2021. https://doi.org/10.1039/D0MA00807A.

Article  Google Scholar 

Jafari S, Mahyad B, Hashemzadeh H, Janfaza S, Gholikhani T, Tayebi L. Biomedical applications of TiO2 nanostructures: recent advances. Int J Nanomedicine. 2020. https://doi.org/10.2147/IJN.S249441.

Article  PubMed  PubMed Central  Google Scholar 

Meng X, Banis MN, Geng D, Li X, Zhang Y, Li R, Abou-Rachid H, Sun X. Controllable atomic layer deposition of one-dimensional nanotubular TiO2. Appl Surf Sci. 2013. https://doi.org/10.1016/j.apsusc.2012.11.116.

Article  Google Scholar 

Cibim DD, Saito MT, Giovani PA, Borges FS, Pecorari VGA, Gomes OP, Lisboa-Filho PN, Nociti-Junior FH, Puppin-Rontani RM, Kantovitz KR. Novel nanotechnology of TiO2 improves physical-chemical and biological properties of glass ionomer cement. Int J Biomater. 2017. https://doi.org/10.1155/2017/7123919.

Article  PubMed  PubMed Central  Google Scholar 

Kantovitz KR, Fernandes FP, Feitosa IV, Lazzarini MO, Denucci GC, Gomes OP, Giovani PA, Moreira KMS, Pecorari VGA, Borges AFS, Nociti-Junior FH, Basting RT, Lisboa-Filho PN, Puppin-Rontani RM. TiO2 nanotubes improve physico-mechanical properties of glass ionomer cement. Dent Mater. 2020. https://doi.org/10.1016/j.dental.2020.01.018.

Article  PubMed  Google Scholar 

Abdulrazzaq Naji S, Jafarzadeh Kashi TS, Pourhajibagher M, Behroozibakhsh M, Masaeli R, Bahador A. Evaluation of antimicrobial properties of conventional poly(methyl methacrylate) denture base resin materials containing hydrothermally synthesised anatase TiO2 nanotubes against cariogenic bacteria and candida albicans. Iran J Pharm Res. 2018;17(Suppl2):161–72.

PubMed  PubMed Central  Google Scholar 

Liou JW, Chang HH. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria. Arch Immunol Ther Exp (Warsz). 2012. https://doi.org/10.1007/s00005-012-0178-x.

Article  PubMed  Google Scholar 

Araújo IJS, Ricardo MG, Gomes OP, et al. Titanium dioxide nanotubes added to glass ionomer cements affect S. mutans viability and mechanisms of virulence. Braz Oral Res. 2021. https://doi.org/10.1590/1807-3107bor-2021.vol35.0062.

Article  PubMed  Google Scholar 

Arruda LB, Santos CM, Orlandi MO, Schreiner WH, Lisboa-Filho PN. Formation and evolution of TiO2 nanotubes in alkaline synthesis. Ceram Inter. 2015. https://doi.org/10.1016/j.ceramint.2014.10.113.

Article  Google Scholar 

Paravina RD, Ghinea R, Herrera LJ, Bona AD, Igiel C, Linninger M, Sakai M, Takahashi H, Tashkandi E, Perez MM. Color difference thresholds in dentistry. J Esthet Restor Dent. 2015. https://doi.org/10.1111/jerd.12149.

Article  PubMed  Google Scholar 

Arruda LB, Santos CM, Orlandi MO, Schreiner WH, Lisboa-Filho PN. Formation and evolution of TiO2 nanotubes in alkaline synthesis. Ceram Intern. 2015. https://doi.org/10.1016/j.ceramint.2014.10.113.

Article  Google Scholar 

Jones CS, Billington RW, Pearson GJ. The in vivo perception of roughness of restorations. Br Dent J. 2004. https://doi.org/10.1038/sj.bdj.4810881.

Article  PubMed  Google Scholar 

Bollenl CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater. 1997. https://doi.org/10.1016/S0109-5641(97)80038-3.

Article  Google Scholar 

Dos Santos AF, Sandes de Lucena F, Sanches Borges AF, Lisboa-Filho PN, Furuse AY. Incorporation of TiO2 nanotubes in a polycrystalline zirconia: Synthesis of nanotubes, surface characterization, and bond strength. J Prosthet Dent. 2018. https://doi.org/10.1016/j.prosdent.2017.10.027.

Article  PubMed  Google Scholar 

Carp O, Huisman CL, Reller A. Photoinduced reactivity of titanium dioxide. Prog Solid State Ch. 2004. https://doi.org/10.1016/j.progsolidstchem.2004.08.001.

Article  Google Scholar 

Liou JW, Chang HH. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocat

留言 (0)

沒有登入
gif