Acute CCl4-induced intoxication reduces complex I, but not complex II-based mitochondrial bioenergetics – protective role of succinate

Abramov AY, Angelova PR (2019) Cellular mechanisms of complex I-associated pathology. Biochem Soc Trans 47:1963–1969. https://doi.org/10.1042/BST20191042

Article  CAS  PubMed  Google Scholar 

Abramov AY, Scorziello A, Duchen MR (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci 27:1129–1138. https://doi.org/10.1523/JNEUROSCI.4468-06.2007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aldaba-Muruato LR, Moreno MG, Shibayama M, Tsutsumi V, Muriel P (2012) Protective effects of allopurinol against acute liver damage and cirrhosis induced by carbon tetrachloride: modulation of NF-kappaB, cytokine production and oxidative stress. Biochim Biophys Acta 1820:65–75. https://doi.org/10.1016/j.bbagen.2011.09.018

Article  CAS  PubMed  Google Scholar 

Angelova PR, Kerbert AJC, Habtesion A, Hall A, Abramov AY, Jalan R (2022) Hyperammonaemia induces mitochondrial dysfunction and neuronal cell death. JHEP Rep 4:100510. https://doi.org/10.1016/j.jhepr.2022.100510

Article  PubMed  PubMed Central  Google Scholar 

Baev AY, Elustondo PA, Negoda A, Pavlov EV (2018) Osmotic regulation of the mitochondrial permeability transition pore investigated by light scattering, fluorescence and electron microscopy techniques. Anal Biochem 552:38–44. https://doi.org/10.1016/j.ab.2017.07.006

Article  CAS  PubMed  Google Scholar 

Baev AY, Angelova PR, Abramov AY (2020) Inorganic polyphosphate is produced and hydrolyzed in F0F1-ATP synthase of mammalian mitochondria. Biochem J 477:1515–1524. https://doi.org/10.1042/BCJ20200042

Article  CAS  PubMed  Google Scholar 

Baev AY, Charishnikova OS, Khasanov FA, Nebesnaya KS, Makhmudov AR, Rakhmedova MT, Khushbaktova ZA, Syrov VN, Levitskaya YV (2022a) Ecdysterone prevents negative effect of acute immobilization stress on energy metabolism of rat liver mitochondria. J Steroid Biochem Mol Biol 219:106066. https://doi.org/10.1016/j.jsbmb.2022.106066

Article  CAS  PubMed  Google Scholar 

Baev AY, Vinokurov AY, Novikova IN, Dremin VV, Potapova EV, Abramov AY (2022b) Interaction of Mitochondrial Calcium and ROS in Neurodegeneration. Cells 11:1–17. https://doi.org/10.3390/cells11040706

Article  CAS  Google Scholar 

Bakare AB, Rao RR, Iyer S (2021) Cell-Permeable Succinate Increases Mitochondrial Membrane Potential and Glycolysis in Leigh Syndrome Patient Fibroblasts. Cells 10:2255. https://doi.org/10.3390/cells10092255

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bartolome F, Abramov AY (2015) Measurement of mitochondrial NADH and FAD autofluorescence in live cells. Methods Mol Biol 1264:263–270. https://doi.org/10.1007/978-1-4939-2257-4_23

Article  CAS  PubMed  Google Scholar 

Bezwada D, Perelli L, Lesner NP, Cai L, Brooks B, Wu Z, Vu HS, Sondhi V, Cassidy DL, Kasitinon S, Kelekar S, Cai F, Aurora AB, Patrick M, Leach A, Ghandour R, Zhang Y, Do D, McDaniel P, Sudderth J, Dumesnil D, House S, Rosales T, Poole AM, Lotan Y, Woldu S, Bagrodia A, Meng X, Cadeddu JA, Mishra P, Garcia-Bermudez J, Pedrosa I, Kapur P, Courtney KD, Malloy CR, Genovese G, Margulis V, DeBerardinis RJ (2024) Mitochondrial complex I promotes kidney cancer metastasis. Nature. https://doi.org/10.1038/s41586-024-07812-3

Article  PubMed  PubMed Central  Google Scholar 

Bisbach CM, Hass DT, Robbings BM, Rountree AM, Sadilek M, Sweet IR, Hurley JB (2020) Succinate Can Shuttle Reducing Power from the Hypoxic Retina to the O(2)-Rich Pigment Epithelium. Cell Rep 31:107606. https://doi.org/10.1016/j.celrep.2020.107606

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blacker TS, Duchen MR (2016) Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radic Biol Med 100:53–65. https://doi.org/10.1016/j.freeradbiomed.2016.08.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bottenus RE, Spach PI, Filus S, Cunningham CC (1982) Effect of chronic ethanol consumption of energy-linked processes associated with oxidative phosphorylation: proton translocation and ATP-Pi exchange. Biochem Biophys Res Commun 105:1368–1373. https://doi.org/10.1016/0006-291x(82)90938-x

Article  CAS  PubMed  Google Scholar 

Briston T, Roberts M, Lewis S, Powney BM, Staddon J, Szabadkai G, Duchen MR (2017) Mitochondrial permeability transition pore: sensitivity to opening and mechanistic dependence on substrate availability. Sci Rep 7:10492. https://doi.org/10.1038/s41598-017-10673-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cederbaum AI, Lieber CS, Rubin E (1974) Effects of chronic ethanol treatment of mitochondrial functions damage to coupling site I. Arch Biochem Biophys 165:560–569. https://doi.org/10.1016/0003-9861(74)90283-5

Article  CAS  PubMed  Google Scholar 

Cheshchevik VT, Lapshina EA, Dremza IK, Zabrodskaya SV, Reiter RJ, Prokopchik NI, Zavodnik IB (2012) Rat liver mitochondrial damage under acute or chronic carbon tetrachloride-induced intoxication: protection by melatonin and cranberry flavonoids. Toxicol Appl Pharmacol 261:271–279. https://doi.org/10.1016/j.taap.2012.04.007

Article  CAS  PubMed  Google Scholar 

Correa PR, Kruglov EA, Thompson M, Leite MF, Dranoff JA, Nathanson MH (2007) Succinate is a paracrine signal for liver damage. J Hepatol 47:262–269. https://doi.org/10.1016/j.jhep.2007.03.016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ehinger JK, Piel S, Ford R, Karlsson M, Sjovall F, Frostner EA, Morota S, Taylor RW, Turnbull DM, Cornell C, Moss SJ, Metzsch C, Hansson MJ, Fliri H, Elmer E (2016) Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency. Nat Commun 7:12317. https://doi.org/10.1038/ncomms12317

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elias-Miro M, Jimenez-Castro MB, Rodes J, Peralta C (2013) Current knowledge on oxidative stress in hepatic ischemia/reperfusion. Free Radic Res 47:555–568. https://doi.org/10.3109/10715762.2013.811721

Article  CAS  PubMed  Google Scholar 

Ferguson SJ (2010) ATP synthase: from sequence to ring size to the P/O ratio. Proc Natl Acad Sci U S A 107:16755–16756. https://doi.org/10.1073/pnas.1012260107

Article  PubMed  PubMed Central  Google Scholar 

Giorgi-Coll S, Amaral AI, Hutchinson PJA, Kotter MR, Carpenter KLH (2017) Succinate supplementation improves metabolic performance of mixed glial cell cultures with mitochondrial dysfunction. Sci Rep 7:1003. https://doi.org/10.1038/s41598-017-01149-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gonzalez-Rodriguez P, Zampese E, Stout KA, Guzman JN, Ilijic E, Yang B, Tkatch T, Stavarache MA, Wokosin DL, Gao L, Kaplitt MG, Lopez-Barneo J, Schumacker PT, Surmeier DJ (2021) Disruption of mitochondrial complex I induces progressive parkinsonism. Nature 599:650–656. https://doi.org/10.1038/s41586-021-04059-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han X, Bao X, Lou Q, Xie X, Zhang M, Zhou S, Guo H, Jiang G, Shi Q (2019) Nicotinamide riboside exerts protective effect against aging-induced NAFLD-like hepatic dysfunction in mice. PeerJ 7:e7568. https://doi.org/10.7717/peerj.7568

Article  PubMed  PubMed Central  Google Scholar 

Hass DT, Bisbach CM, Robbings BM, Sadilek M, Sweet IR, Hurley JB (2022) Succinate metabolism in the retinal pigment epithelium uncouples respiration from ATP synthesis. Cell Rep 39:110917. https://doi.org/10.1016/j.celrep.2022.110917

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hass DT, Bisbach CM, Robbings BM, Kamat VS, Sadilek M, Sweet IR and Hurley JB (2021) Succinate metabolism uncouples retinal pigment epithelium mitochondria. 2021.02.10.430650. https://doi.org/10.1101/2021.02.10.430650 %J bioRxiv

Hass DT, Robbings BM, Bisbach CM, Giering E, Mundinger TO, Sadilek M, Sweet IR and Hurley JB (2021) Succinate is Broadly Tissue-Permeant and Uncouples Mitochondrial Respiration from ATP Synthesis. 2021.02.10.430650. https://doi.org/10.1101/2021.02.10.430650 %J bioRxiv

留言 (0)

沒有登入
gif