FeCl3 and GdCl3 solutions as superfast relaxation modifiers for agarose gel: a quantitative analysis

Chan RW, Lau JYC, Lam WW, Lau AZ (2019) Magnetic resonance imaging. In: Narayan R (ed) Encyclopedia of biomedical engineering. Elsevier, Oxford, pp 574–587

Chapter  Google Scholar 

Azhar NAA, Tee HS, Yee YY, Awang MNA, Abdul Manan H, Yusoff AN (2020) T1 and T2 characteristics of agarose gel phantom with different gadolinium oxide concentration as relaxation modifier. Phys Technol Med 1(1):27–37

Google Scholar 

Yusoff AN, Ding AZ, Azman N, Awang MNA, Abdul Manan H (2020) Homogeneity and stability of poly (vinyl alcohol) slime phantom with different borax concentration. Solid State Sci Technol 27(1 & 2):51–67

Google Scholar 

Keenan KE, Ainslie M, Barker AJ, Boss MA, Cecil KM, Charles C, Chenevert TL, Clarke L, Evelhoch JL, Finn P, Gembris D, Gunter JL, Hill DLG, Jack CR Jr, Jackson EF, Liu G, Russek SE, Sharma SD, Steckner M, Stupic KF, Trzasko JD, Yuan C, Zheng J (2018) Quantitative magnetic resonance imaging phantoms: a review and the need for a system phantom. Magn Reson Med 79(1):48–61

Article  PubMed  Google Scholar 

Magnetic Resonance-Technology Information Portal (MR-TIP) (member of SoftWays’ Medical Imaging Group). a comparison of MRI acronyms used by manufacturers https://www.mr-tip.com/serv1.php?type=cam. Accessed 27 Mar 2023.

Stupic KF, Ainslie M, Boss MA, Charles C, Dienstfrey AM, Evelhoch JI, Finn P, Gimbutas Z, Gunter JL, Hill DLG, Jack CR, Jackson EF, Karaulanov T, Keenan KF, Liu G, Martin MN, Prasad PV, Rentz NS, Yuan C, Russek SE (2021) A standard system phantom for magnetic resonance imaging. Magn Reson Med 86:1194–1211

Article  PubMed  PubMed Central  Google Scholar 

Singhrao K, Fu J, Gao Y, Wu HH, Yang Y, Hu P, Lewis JH (2020) A generalized system of tissue-mimicking materials for computed tomography and magnetic resonance imaging. Phys Med Biol 65(13):13NT01

Article  CAS  PubMed  Google Scholar 

Er WX, Lim WJ, Dwihapsari Y, Awang MNA, Yusoff AN (2021) Signal-to-noise ratio uniformity and stability of agar gel phantom with iron (III) oxide as relaxation modifier. Beni-Suef University J Basic Appl Sci 10(84):1–13

Google Scholar 

Tee HS, Yusoff AN, Yee YY, Manan HA, Awang M (2020) SNRo, T1 and T2 characteristics of poly(vinyl) alcohol (PVA) MRI slime phantom with different PVA/borax ratio. J Phys Conf Ser 1497:012014

Article  CAS  Google Scholar 

Ying Yih Y, Hui Sin T, Azhar NAA, Abdul Manan H, Awang MNA, Yusoff AN (2020) T1 and T2 characteristics of poly(vinyl) alcohol slime phantom with different relaxation modifier concentrations. Solid State Sci Technol 27(1 & 2):105–121

Google Scholar 

Yusoff AN, Rashid N, Usman Ali S (2018) T2* relaxation of agar gel with and without the presence of tumor-like structure as obtained from resting state fMRI sequence protocol. J Phys Conf Ser 1083:012017

Article  Google Scholar 

Yusoff AN (2021) A review on experimental findings on proton relaxation in several laboratory magnetic resonance imaging (MRI) phantoms. Solid State Sci Technol 29(1 & 2):67–76

CAS  Google Scholar 

de la Fuente MG, Dies-Suarez P, Tobón SH (2019) Wave propagation and stiffness analysis in agarose phantoms by magnetic resonance elastography. AIP Conf Proc 2090(1):040003

Article  Google Scholar 

Ni D, Bu W, Ehlerding EB, Cai W, Shi J (2017) Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem Soc Rev 46(23):7438–7468

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu W, Miao X, Oh I-T, Chae KS, Cha H, Chang Y, Lee GH (2016) Dextran-coated ultrasmall Gd2O3 nanoparticles as potential T1 MRI contrast agent. ChemistrySelect 1(19):6086–6091

Article  CAS  Google Scholar 

Nan A, Suciu M, Ardelean I, Şenilă M, Turcu R (2020) Characterization of the nuclear magnetic resonance relaxivity of gadolinium functionalized magnetic nanoparticles. Anal Lett 54(1–2):124–139

Google Scholar 

Tayade N, Arjunwadkar P (2017) Magnetic behavior of Fe3O4 nanoparticles on post-HCL treatment in synthesis. Int J Pure Appl 13(3):265–270

Google Scholar 

Atabaev TS (2018) PEG-coated superparamagnetic dysprosium-doped Fe3O4 nanoparticles for potential MRI imaging. BioNanoScience 8:299–303

Article  Google Scholar 

Xiao Y-D, Paudel R, Liu J, Ma C, Zhang Z-S, Zhou S-K (2016) MRI contrast agents: classification and application (Review). Int J Mol Med 38(5):1319–1326

Article  CAS  PubMed  Google Scholar 

Mohd Sebri N, Heah HY, Dwihapsari Y, Awang MNA, Yusoff AN (2021) Evaluating signal uniformity and spin relaxation of several laboratory-based MRI phantoms. Phys Technol Med 1(2):1–12

Google Scholar 

Elster AD (2023). Questions and answers in MRI, https://mriquestions.com/index.html. Accessed 17 Nov 2023

Esposito F, Wolf U, Baumgartner S (2021) NMR relaxation time investigation of highly diluted aqueous solutions of silica-lactose. J Mol Liq 337:115975

Article  CAS  Google Scholar 

D’Agostino C, Brauer P, Charoen-Rajapark P, Croucha MD, Gladdena LF (2017) Effect of paramagnetic species on T1, T2 and T1/T2 NMR relaxation times of liquids in porous CuSO4/Al2O3. RSC Adv 7:36163

Article  CAS  Google Scholar 

Antoniou A, Georgiou L, Christodoulou T, Panayiotou N, Ioannides C, Zamboglou N, Damianou C (2022) MR relaxation times of agar-based tissue-mimicking phantoms. J Appl Clin Med Phys 23(5):e13533

Article  PubMed  PubMed Central  Google Scholar 

National Library of Medicine (NLM) (2023) Agarose. National Center for Biotechnology Information. https://pubchem.ncbi.nlm.nih.gov/compound/Agarose. Accessed 17 Nov 2023

Duflot M, Sanchez-Alonso I, Duflos G, Careche M (2018) LF 1H NMR T2 relaxation rate as affected by water addition, NaCl and pH in fresh, frozen and cooked minced hake. Food Chem. https://doi.org/10.1016/j.foodchem.2018.10.106

Article  PubMed  Google Scholar 

Dwihapsari Y, Asdiantoro E, Maulidiyah N (2020) T2 quantification of agarose with contrast agent in magnetic resonance imaging. J Phys Conf Ser 1505:012044

Article  CAS  Google Scholar 

Chin ED, Ma J, Lee CL, Jara H (2013) Comparison between T2 relaxation time and storage modulus for agarose gel. In: 2013 39th annual northeast bioengineering conference. p. 113–114

Dwihapsari Y, Asdiantoro E, Maulidiyah N (2019) On the assessment of image inhomogeneity using T2 magnetic resonance imaging in head phantom for radiotherapy treatment planning: Preliminary study. Appl Magn Reson 51:59–69

Article  Google Scholar 

Chaturvedi A, Pranjali P, Meher M, Raj R, Basak M, Singh R, Poluri KM, Kumar D, Guleria A (2020) In vitro and ex vivo relaxometric properties of ethylene glycol coated gadolinium oxide nanoparticles for potential use as contrast agents in magnetic resonance imaging. J Appl Phys 128:034903

Article  CAS  Google Scholar 

Gillmann C, Homolka N, Johnen W, Runz A, Echner G, Pfaffenberger A, Mann P, Schneider V, Hoffmann A, Troost E, Koerber S, Kotzerke J, Beuthien-Baumann B (2020) Technical Note: ADAM PETer—an anthropomorphic, deformable and multimodality pelvis phantom with positron emission tomography extension for radiotherapy. Med Phys. https://doi.org/10.1002/MP.14597

Article  PubMed  Google Scholar 

Yongabi D, Mertens N, Peeters R (2021) Reproducibility of T1 relaxation times in diagnostic MRI: a phantom study. Phys Med 12:100038

Article  Google Scholar 

Ikemoto Y, Takao W, Yoshitomi K, Ohno S, Harimoto T, Kanazawa S, Shibuya K, Kuroda M, Kato H (2011) Development of a human-tissue-like phantom for 3.0-T MRI. Med Phys 38(11):6336–6342

Article  PubMed  Google Scholar 

Hattori K, Ikemoto Y, Takao W, Ohno S, Harimoto T, Kanazawa S, Oita M, Shibuya K, Kuroda M, Kato H (2013) Development of MRI phantom equivalent to human tissues for 3.0-T MRI. Med Phys 40(3):032303

Article  PubMed  Google Scholar 

Brzozowski P, Penev KI, Martinez FM, Scholl TJ, Mequanint K (2019) Gellan gum-based gels with tunable relaxation properties for MRI phantoms. Magn Reson Imaging 57:40–49

Article  CAS  PubMed  Google Scholar 

Chang S, Park J, Yang Y-J, Beck KS, Kim PK, Choi BW, Jung JI (2022) Myocardial T2* imaging at 3T and 1.5T: a pilot study with phantom and normal myocardium. J Cardiovasc Dev Dis 9:271

PubMed  PubMed Central  Google Scholar 

Barnhart JL, Kuhnert N, Bakan DA, Berk RN (1987) Biodistribution of GdCl3 and Gd-DTPA and their influence on proton magnetic relaxation in rat tissues. Magn Reson Imaging 5(3):221–231

Article  CAS  PubMed  Google Scholar 

Eberhardt TL, So C-L, Protti A, So P-W (2009) Gadolinium chloride as a contrast agent for imaging woodcomposite components by magnetic resonance. Holzforschung 63(2009):75–79

Article  CAS  Google Scholar 

Schneider MGM, Martín MJ, Otarola J, Vakarelska E, Simeonov V, Lassalle V, Nedyalkova M (2022) Biomedical applications of iron oxide nanoparticles: current insights, progress and perspectives. Pharmaceutics 14(1):204

Article  Google Scholar 

Iyad N, Ahmad MS, Alkhatib SG, Hjouj M (2023) Gadolinium contrast agents - Challenges and opportunities of a multidisciplinary approach: literature review. Europe J Radiol Open 11:100503

Article  Google Scholar 

Fernández-Barahona I, Muñoz-Hernando M, Herranz F, Pellico J (2020) Iron oxide nanoparticles: analternative for positive contrast in magnetic resonance imaging. Inorganics 8(28):8040028

Google Scholar 

留言 (0)

沒有登入
gif