Enhancing MRI radiomics feature reproducibility and classification performance in Parkinson’s disease: a harmonization approach to gray-level discretization variability

Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577

Article  PubMed  Google Scholar 

Lambin P, Leijenaar RT, Deist TM, Peerlings J, De Jong EE, Van Timmeren J et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14(12):749–762

Article  PubMed  Google Scholar 

Feng Q, Chen Y, Liao Z, Jiang H, Mao D, Wang M et al (2018) Corpus callosum radiomics-based classification model in Alzheimer’s disease: a case-control study. Front Neurol 9:618

Article  PubMed  PubMed Central  Google Scholar 

Cheng J-Z, Ni D, Chou Y-H, Qin J, Tiu C-M, Chang Y-C et al (2016) Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep 6(1):24454

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azimi M-S, Hosseini MS, Shahzadeh S, Ardekani AF, Arabi H, Zaidi H. (2022) Early detection of Parkinson’s disease based on diffusion tensor imaging and deep learning. 2022 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE; 2022: 1–4.

Azimi M-S, Hosseini MS, Shahzadeh S, Ardekani AF, Arabi H, Zaidi H. Attention-based deep neural network for early detection of Parkinson’s disease using diffusion tensor imaging. 2022 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE; 2022: 1–4.

Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5(1):4006

Article  CAS  PubMed  Google Scholar 

Sun D, Wu X, Xia Y, Wu F, Geng Y, Zhong W et al (2021) Differentiating Parkinson’s disease motor subtypes: a radiomics analysis based on deep gray nuclear lesion and white matter. Neurosci Lett 760:136083

Article  CAS  PubMed  Google Scholar 

Bu S, Pang H, Li X, Zhao M, Wang J, Liu Y et al (2023) Multi-parametric radiomics of conventional T1 weighted and susceptibility-weighted imaging for differential diagnosis of idiopathic Parkinson’s disease and multiple system atrophy. BMC Med Imaging 23(1):204

Article  PubMed  PubMed Central  Google Scholar 

Hosseini MS, Azimi M-S, Shahzadeh S, Ardekani AF, Arabi H, Zaidi H. (2022) Supervised classification of mean diffusivity in substantia Nigra for Parkinson’s disease diagnosis. 2022 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE; 2022: 1–4.

Panahi M, Hosseini MS (2024) Multi-modality radiomics of conventional T1 weighted and diffusion tensor imaging for differentiating Parkinson’s disease motor subtypes in early-stages. Sci Rep 14(1):20708

Article  CAS  PubMed  PubMed Central  Google Scholar 

Traverso A, Wee L, Dekker A, Gillies R (2018) Repeatability and reproducibility of radiomic features: a systematic review. Int J Radiat Oncol Biol Phys 102(4):1143–58

Article  PubMed  PubMed Central  Google Scholar 

Hosseini MS, Aghamiri SMR, Ardekani AF, BagheriMofidi SM (2024) Assessing the stability and discriminative ability of radiomics features in the tumor microenvironment: leveraging peri-tumoral regions in vestibular schwannoma. Eur J Radiol 2024:111654

Article  Google Scholar 

Zwanenburg A, Vallières M, Abdalah MA, Aerts HJ, Andrearczyk V, Apte A et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295(2):328–338

Article  PubMed  Google Scholar 

Duron L, Balvay D, Vande Perre S, Bouchouicha A, Savatovsky J, Sadik J-C et al (2019) Gray-level discretization impacts reproducible MRI radiomics texture features. PLoS One 14(3):e0213459

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leijenaar RT, Nalbantov G, Carvalho S, Van Elmpt WJ, Troost EG, Boellaard R et al (2015) The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep 5(1):11075

Article  CAS  PubMed  PubMed Central  Google Scholar 

Orlhac F, Soussan M, Maisonobe J-A, Garcia CA, Vanderlinden B, Buvat I (2014) Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med 55(3):414–422

Article  CAS  PubMed  Google Scholar 

Hajianfar G, Hosseini SA, Bagherieh S, Oveisi M, Shiri I, Zaidi H (2024) Impact of harmonization on the reproducibility of MRI radiomic features when using different scanners, acquisition parameters, and image pre-processing techniques: a phantom study. Med Biol Eng Comp 62:2319–2332

Article  Google Scholar 

Koçak B, Yüzkan S, Mutlu S, Karagülle M, Kala A, Kadıoğlu M et al (2024) Influence of image preprocessing on the segmentation-based reproducibility of radiomic features: in vivo experiments on discretization and resampling parameters. Diagn Interv Radiol 30(3):152

Article  PubMed  PubMed Central  Google Scholar 

Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8(1):118–127

Article  PubMed  Google Scholar 

Fortin J-P, Parker D, Tunç B, Watanabe T, Elliott MA, Ruparel K et al (2017) Harmonization of multi-site diffusion tensor imaging data. Neuroimage 161:149–170

Article  PubMed  Google Scholar 

Orlhac F, Boughdad S, Philippe C, Stalla-Bourdillon H, Nioche C, Champion L et al (2018) A postreconstruction harmonization method for multicenter radiomic studies in PET. J Nucl Med 59(8):1321–1328

Article  CAS  PubMed  Google Scholar 

Li Y, Ammari S, Balleyguier C, Lassau N, Chouzenoux E (2021) Impact of preprocessing and harmonization methods on the removal of scanner effects in brain MRI radiomic features. Cancers 13(12):3000

Article  PubMed  PubMed Central  Google Scholar 

Stebbins GT, Goetz CG, Burn DJ, Jankovic J, Khoo TK, Tilley BC (2013) How to identify tremor dominant and postural instability/gait difficulty groups with the movement disorder society unified Parkinson’s disease rating scale: comparison with the unified Parkinson’s disease rating scale. Mov Disord 28(5):668–670

Article  PubMed  Google Scholar 

Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) Fsl. Neuroimage 62(2):782–90

Article  PubMed  Google Scholar 

Smith SM. (2000) BET: Brain extraction tool. FMRIB TR00SMS2b, Oxford centre for functional magnetic resonance imaging of the brain), Department of Clinical Neurology, Oxford University, John Radcliffe Hospital, Headington, UK

Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20(1):45–57

Article  CAS  PubMed  Google Scholar 

Makris N, Goldstein JM, Kennedy D, Hodge SM, Caviness VS, Faraone SV et al (2006) Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr Res 83(2–3):155–171

Article  PubMed  Google Scholar 

Frazier JA, Chiu S, Breeze JL, Makris N, Lange N, Kennedy DN et al (2005) Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. Am J Psychiatry 162(7):1256–1265

Article  PubMed  Google Scholar 

Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980

Article  PubMed  Google Scholar 

Goldstein JM, Seidman LJ, Makris N, Ahern T, O’Brien LM, Caviness VS Jr et al (2007) Hypothalamic abnormalities in schizophrenia: sex effects and genetic vulnerability. Biol Psychiat 61(8):935–945

Article  CAS  PubMed  Google Scholar 

Keuken MC, Forstmann BU (2015) A probabilistic atlas of the basal ganglia using 7 T MRI. Data Brief 4:577–582

Article  PubMed  PubMed Central  Google Scholar 

Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2):825–841

Article  PubMed  Google Scholar 

Andersson JL, Jenkinson M, Smith S. (2007) Non-linear registration, aka Spatial normalisation FMRIB technical report TR07JA2. FMRIB Analysis Group of the University of Oxford. 2(1): 1–22

Van Griethuysen JJ, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V et al (2017) Computational radiomics system to decode the radiographic phenotype. Can Res 77(21):e104–e107

Article  Google Scholar 

Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420

Article  CAS 

留言 (0)

沒有登入
gif