Aarsland D, Muniz G, Matthews F (2011) Nonlinear decline of mini-mental state examination in Parkinson’s disease. Mov Disord 26(2):334–337
Baeuchl C, Glöckner F, Koch C, Petzold J, Schuck NW, Smolka MN, Li S-C (2023) Dopamine differentially modulates medial temporal lobe activity and behavior during spatial navigation in young and older adults. NeuroImage 273:120099
Bohnen NI, Yarnall AJ, Weil RS, Moro E, Moehle MS, Borghammer P, Bedard M-A, Albin RL (2022) Cholinergic system changes in Parkinson’s disease: emerging therapeutic approaches. Lancet Neurol 21(4):381–392
Article CAS PubMed PubMed Central Google Scholar
Briand KA, Hening W, Poizner H, Sereno AB (2001) Automatic orienting of visuospatial attention in Parkinson’s disease. Neuropsychologia 39(11):1240–1249
Article CAS PubMed Google Scholar
Chen L, Bedard P, Hallett M, Horovitz SG (2021) Dynamics of Top-Down Control and Motor Networks in Parkinson’s Disease. Mov Disord 36(4):916–926
Article CAS PubMed PubMed Central Google Scholar
Cristinzio C, Bononi M, Piacentini S, Albanese A, Bartolomeo P (2013) Attentional networks in Parkinson’s disease. Behav Neurol 27(4):495–500
Article PubMed PubMed Central Google Scholar
de Souza Almeida R, Faria-Jr A, Klein RM (2021) On the origins and evolution of the attention network tests. Neurosci Biobehavioral Reviews 126:560–572
Deiber M-P, Ibañez V, Missonnier P, Rodriguez C, Giannakopoulos P (2013) Age-associated modulations of cerebral oscillatory patterns related to attention control. NeuroImage 82:531–546
Di Russo F, Martínez A, Sereno MI, Pitzalis S, Hillyard SA (2002) Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp 15(2):95–111
Esposito M, Tamietto M, Geminiani GC, Celeghin A (2021) A subcortical network for implicit visuo-spatial attention: implications for Parkinson’s Disease. Cortex 141:421–435
Fernandez-Baizan C, Paula Fernandez Garcia M, Diaz-Caceres E, Menendez-Gonzalez M, Arias JL, Mendez M (2020) Patients with Parkinson’s disease show alteration in their visuospatial abilities and in their egocentric and allocentric spatial orientation measured by card placing tests. J Parkinson’s Disease 10(4):1807–1816
Ferrante O, Patacca A, Di Caro V, Della Libera C, Santandrea E, Chelazzi L (2018) Altering spatial priority maps via statistical learning of target selection and distractor filtering. Cortex 102:67–95
Fisher YE, Marquis M, D’Alessandro I, Wilson RI (2022) Dopamine promotes head direction plasticity during orienting movements. Nature 612(7939):316–322
Article CAS PubMed PubMed Central Google Scholar
Ginis P, Nackaerts E, Nieuwboer A, Heremans E (2018) Cueing for people with Parkinson’s disease with freezing of gait: a narrative review of the state-of-the-art and novel perspectives. Annals Phys Rehabilitation Med 61(6):407–413
Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stern MB, Dodel R (2008) Movement Disorder Society‐sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS‐UPDRS): scale presentation and clinimetric testing results. Mov Disorders: Official J Mov Disorder Soc 23(15):2129–2170
Gómez CM, Marco J, Grau C (2003) Preparatory visuo-motor cortical network of the contingent negative variation estimated by current density. NeuroImage 20(1):216–224
Hall JM, O’Callaghan C, Shine JM, Muller AJ, Phillips JR, Walton CC, Lewis SJ, Moustafa AA (2016) Dysfunction in attentional processing in patients with Parkinson’s disease and visual hallucinations. J Neural Transm 123:503–507
Article CAS PubMed Google Scholar
Hayashida S, Kameyama T, Niwa S-I, Itoh K, Hiramatsu K-I, Fukuda M, Saitoh O, Iwanami A, Nakagome K, Sasaki T (1992) Distributions of the nd and P300 in a normal sample. Int J Psychophysiol 13(3):233–239
Article CAS PubMed Google Scholar
Kunimatsu J, Maeda K, Hikosaka O (2019) The caudal part of putamen represents the historical object value information. J Neurosci 39(9):1709–1719
CAS PubMed PubMed Central Google Scholar
Li Z, Chen W, Zeng X, Ni J, Guo Y, Zhang H, Li Y, Ma Y, Meng F (2023) Dynamic functional connectivity assesses the progression of Parkinson’s disease. Innovat Med 1(100027):1059717
Liu H, Li B, Xi P, Liu Y, Li F, Lang Y, Tang R, Ma N, He J (2023) Time-varying functional connectivity of rat brain during bipedal walking on unexpected terrain. Cyborg Bionic Syst 4:0017
Article PubMed PubMed Central Google Scholar
Madhyastha TM, Askren MK, Boord P, Grabowski TJ (2015) Dynamic connectivity at rest predicts attention task performance. Brain Connect 5(1):45–59. https://doi.org/10.1089/brain.2014.0248
Article PubMed PubMed Central Google Scholar
Maidan I, Jacob Y, Giladi N, Hausdorff JM, Mirelman A (2019) Altered organization of the dorsal attention network is associated with freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord 63:77–82
Meles SK, Tang CC, Teune LK, Dierckx RA, Dhawan V, Mattis PJ, Leenders KL, Eidelberg D (2015) Abnormal metabolic pattern associated with cognitive impairment in Parkinson’s disease: a validation study. J Cereb Blood Flow Metabolism 35(9):1478–1484
Missonnier P, Herrmann FR, Richiardi J, Rodriguez C, Deiber M-P, Gold G, Giannakopoulos P (2013) Attention-related potentials allow for a highly accurate discrimination of mild cognitive impairment subtypes. Neurodegenerative Dis 12(2):59–70
Novitskiy N, Ramautar JR, Vanderperren K, De Vos M, Mennes M, Mijovic B, Vanrumste B, Stiers P, Van den Bergh B, Lagae L (2011) The BOLD correlates of the visual P1 and N1 in single-trial analysis of simultaneous EEG-fMRI recordings during a spatial detection task. NeuroImage 54(2):824–835
Article CAS PubMed Google Scholar
Pauletti C, Mannarelli D, Locuratolo N, Pollini L, Currà A, Marinelli L, Rinalduzzi S, Fattapposta F (2017) Attention in Parkinson’s disease with fatigue: evidence from the attention network test. J Neural Transm 124:335–345
Peter J, Ferraioli F, Mathew D, George S, Chan C, Alalade T, Salcedo SA, Saed S, Tatti E, Quartarone A (2022) Movement-related beta ERD and ERS abnormalities in neuropsychiatric disorders. Front NeuroSci 16:1045715
Article PubMed PubMed Central Google Scholar
Poliakoff E, O’Boyle DJ, Moore AP, McGlone FP, Cody FW, Spence C (2003) Orienting of attention and Parkinson’s disease: tactile inhibition of return and response inhibition. Brain 126(9):2081–2092
Posner MI (2012) Imaging attention networks. NeuroImage 61(2):450–456
Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30(12):1591–1601
Railo H, Kraufvelin N, Santalahti J, Laine T (2023) Rapid Withdrawal from a threatening animal is movement-specific and mediated by reflex-like neural processing. NeuroImage 283:120441
Reed CL, Siqi-Liu A, Lydic K, Lodge M, Chitre A, Denaro C, Petropoulos A, Joshi J, Bukach CM, Couperus JW (2022) Selective contributions of executive function ability to the P3. Int J Psychophysiol 176:54–61
Riddle J, Hwang K, Cellier D, Dhanani S, D’Esposito M (2019) Causal evidence for the role of neuronal oscillations in top–down and bottom–up attention. J Cogn Neurosci 31(5):768–779
留言 (0)