Implementation of all-optical quaternary Hadamard gate using 2D photonic crystal

S. Mukhopadhyay, Role of optics in super-fast information processing. Indian J. Phys. 84, 1069–1074 (2010). https://doi.org/10.1007/s12648-010-0101-4

S. Slussarenko, G.J. Pryde, Photonic quantum information processing: a concise review. Appl. Phys. Rev. 6(4), 041303 (2019). https://doi.org/10.1063/1.5115814

Article  ADS  Google Scholar 

S. Mukhopadhyay, J.N. Roy, S.K. Bera, Design of a minimized LED array for maximum parallel logic operations in optical shadow casting technique. Opt. Commun. 99(1–2), 31–37 (1993). https://doi.org/10.1016/0030-4018(93)90700-F

Article  ADS  Google Scholar 

A. Basuray, S. Mukhopadhyay, H.K. Ghosh, A.K. Datta, A tristate optical logic system. Opt. Commun. 85(2–3), 167–170 (1991). https://doi.org/10.1016/0030-4018(91)90388-T

Article  ADS  Google Scholar 

K.R. Chowdhury, P.P. Das, S. Mukhopadhyay, All-optical time-domain multiplexing-demultiplexing scheme with nonlinear material. Opt. Eng. 44(3), 035201 (2005). https://doi.org/10.1117/1.1868774

Article  ADS  Google Scholar 

S. Mukhopadhyay, D.N. Das, P.P. Das, P. Ghosh, Implementation of all-optical digital matrix multiplication scheme with nonlinear material. Opt. Eng. 40(9), 1998–2002 (2001). https://doi.org/10.1117/1.1390519

Article  ADS  Google Scholar 

S. Hazra, S. Mukhopadhyay, Implementation of quantum optical tristate CNOT gate using frequency encoding principle with a semiconductor optical amplifier. Optoelectron. Lett. 19, 269–273 (2023). https://doi.org/10.1007/s11801-023-2195-x

Article  ADS  Google Scholar 

S. Hazra, S. Mukhopadhyay, Quantum optical tristate Toffoli gate using frequency encoding principle of light with semiconductor optical amplifier. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01330-7

Article  Google Scholar 

S. Dutta, S. Mukhopadhyay, An all optical approach of frequency encoded NOT based Latch using semiconductor optical amplifier. J. Opt. 39, 39–45 (2010). https://doi.org/10.1007/s12596-010-0004-y

Article  Google Scholar 

S. Dutta, S. Mukhopadhyay, Alternating approach of implementing frequency encoded all-optical logic gates and flip-flop using semiconductor optical amplifier. Optik. 122(12), 1088–1094 (2011). https://doi.org/10.1016/j.ijleo.2010.06.046

Article  ADS  Google Scholar 

M.Z. Zhu, L. Ye, Implementation of swap gate and Fredkin gate using linear optical elements. Int. J. Quantum Inform. 11(3), 1350031 (2013). https://doi.org/10.1142/S0219749913500317

Article  ADS  MathSciNet  Google Scholar 

S. Dey, S. Mukhopadhyay, Implementation of all-optical Pauli-Y gate by the integrated phase and polarisation encoding. IET Optoelectron. 12(4), 176–179 (2018). https://doi.org/10.1049/iet-opt.2017.0138

Article  Google Scholar 

B. Sarkar, S. Mukhopadhyay, An all optical scheme for implementing an integrated Pauli’s X, Y and Z quantum gates with optical switches. J. Opt. 46, 143–148 (2017). https://doi.org/10.1007/s12596-017-0398-x

Article  Google Scholar 

M.N. Sarfaraj, S. Mukhopadhyay, All-optical scheme for implementation of tri-state Pauli-X, Y and Z quantum gates using phase encoding. Optoelectron. Lett. 17, 746–750 (2021). https://doi.org/10.1007/s11801-021-1037-y

Article  ADS  Google Scholar 

S. Dey, P. De, S. Mukhopadhyay, An all-optical implementation of Fredkin gate using Kerr effect. Optoelectron. Lett. 15, 317–320 (2019). https://doi.org/10.1007/s11801-019-8170-x

Article  ADS  Google Scholar 

A.K. Maiti, J.N. Roy, S. Mukhopadhyay, All-optical conversion scheme from binary to its MTN form with the help of nonlinear material based tree-net architecture. Chin. Opt. Lett. 5(8), 480–483 (2007)

ADS  Google Scholar 

M. Mandal, I. Goswami, S. Mukhopadhyay, Study for implementation of Square Root of Quantum Optical Phase Shift Gate using Electro-Optic Modulator. Braz J. Phys. 53, 119 (2023). https://doi.org/10.1007/s13538-023-01331-8

Article  ADS  Google Scholar 

S. Soma, S.K.C. Gowre, M.V. Sonth, B. Gadgay, B. Jyoti, Design and simulation of reconfigurable optical logic gates for integrated optical circuits. Opt. Quant. Electron. 55, 340 (2023). https://doi.org/10.1007/s11082-022-04532-8

Article  Google Scholar 

Y. Huang, M. Shi, A. Yu, L. Xia, Design of multifunctional all-optical logic gates based on photonic crystal waveguides. Appl. Opt. 62(3), 774–781 (2023). https://doi.org/10.1364/AO.473410

Article  ADS  Google Scholar 

H.M.E. Hussein, T.A. Ali, N.H. Rafat, A review on the techniques for building all-optical photonic crystal logic gates. Opt. Laser Technol. 106, 385–397 (2018). https://doi.org/10.1016/j.optlastec.2018.04.018

Article  ADS  Google Scholar 

M. Mandal, P. De, S. Lakshan, M.N. Sarfaraj, S. Hazra, A. Dey, S. Mukhopadhyay, A review of electro-optic, semiconductor optical amplifier and photonic crystal-based optical switches for application in quantum computing. J. Opt. 52, 603–611 (2023). https://doi.org/10.1007/s12596-022-01045-1

Article  Google Scholar 

P. Jindal, M.A. Houran, D. Goyal, A. Choudhary, A review of different techniques used to design photonic crystal-based logic gates. Optik. 280, 170794 (2023). https://doi.org/10.1016/j.ijleo.2023.170794

Article  Google Scholar 

L. He, W.X. Zhang, X.D. Zhang, Topological all-optical logic gates based on two-dimensional photonic crystals. Opt. Express. 27(18), 25841–25859 (2019). https://doi.org/10.1364/OE.27.025841

Article  ADS  Google Scholar 

S. Hazra, S. Mukhopadhyay, Two-dimensional photonic crystal based optical CNOT gate. Opt. Quant. Electron. 55, 961 (2023). https://doi.org/10.1007/s11082-023-05228-3

Article  Google Scholar 

S. Salemian, S. Mohammadnejad, Quantum Hadamard Gate Implementation Using Planar Lightwave Circuit and Photonic Crystal structures. Am. J. Appl. Sci. 5(9), 1144–1148 (2008)

Article  Google Scholar 

A. Dey, S. Lakshan, S. Mukhopadhyay, Development of Nano-Photonic structure for implementation of frequency encoded two-state Pauli X Gate. J. Russ Laser Res. 44, 458–469 (2023). https://doi.org/10.1007/s10946-023-10153-7

Article  Google Scholar 

S. Lakshan, A. Dey, S. Mukhopadhyay, Alternative approach of frequency encoding for implementation of tristate Pauli Z gate with PC-SOA assisted photonic band gap crystal. Opt. Quant. Electron. 55, 613 (2023). https://doi.org/10.1007/s11082-023-04884-9

Article  Google Scholar 

R. Talebzadeh, R. Beiranvand, S.H. Moayed, Design and simulation of an all-optical Fredkin gate based on silicon slab-waveguide in a 2-D photonic crystal. Opt. Quant. Electron. 55, 241 (2023). https://doi.org/10.1007/s11082-022-04489-8

Article  Google Scholar 

P. De, S. Ranwa, S. Mukhopadhyay, Implementation of all-optical Toffoli gate by 2D Si–air photonic crystal. IET Optoelectyronics. 15(3), 139–148 (2021). https://doi.org/10.1049/ote2.12029

Article  Google Scholar 

P. De, S. Ranwa, S. Mukhopadhyay, Alternative scheme for implementation of 3 qubit Fredkin gate with photonic bandgap crystal. Opt. Laser Technol. 167, 109804 (2023). https://doi.org/10.1016/j.optlastec.2023.109804

Article  Google Scholar 

M. Hassangholizadeh-Kashtiban, H. Alipour-Banaei, M.B. Tavakoli, R. Sabbaghi-Nadooshan, Creation of a fast optical Toffoli gate based on photonic crystal nonlinear ring resonators. J. Comput. Electron. 19, 1281–1287 (2020). https://doi.org/10.1007/s10825-020-01508-3

Article  Google Scholar 

M. Hassangholizadeh-Kashtiban, H. Alipour-Banaei, M.B. Tavakoli, R. Sabbaghi-Nadooshan, All-optical Fredkin gate using photonic-crystal-based nonlinear cavities. Appl. Opt. 59(3), 635–641 (2020). https://doi.org/10.1364/AO.379613

Article  ADS  Google Scholar 

P. De, S. Ranwa, S. Mukhopadhyay, Intensity and phase encoding for realization of integrated Pauli X, Y and Z gates using 2D photonic crystal. Opt. Laser Technol. 152, 108141 (2022). https://doi.org/10.1016/j.optlastec.2022.108141

Article  Google Scholar 

M.S.K. Shoja, E. Veisi, M. Seifouri, S. Olyaee, All-optical photonic crystal Feynman and NOT logic gates based on the interference effect. Optik. 291, 171376 (2023). https://doi.org/10.1016/j.ijleo.2023.171376

Article  Google Scholar 

留言 (0)

沒有登入
gif