Ostroverkhova, D., Przytycka, T. M. & Panchenko, A. R. Cancer driver mutations: predictions and reality. Trends Mol. Med. 29, 554–566 (2023).
Article CAS PubMed Google Scholar
Kustatscher, G. et al. Understudied proteins: opportunities and challenges for functional proteomics. Nat. Methods 19, 774–779 (2022).
Article CAS PubMed Google Scholar
Dinstag, G. & Shamir, R. PRODIGY: personalized prioritization of driver genes. Bioinformatics 36, 1831–1839 (2020).
Article CAS PubMed Google Scholar
Leiserson, M. D. M. et al. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat. Genet. 47, 106–114 (2015).
Article CAS PubMed Google Scholar
Sharan, R., Ulitsky, I. & Shamir, R. Network-based prediction of protein function. Mol. Syst. Biol. 3, 88 (2007).
Article PubMed PubMed Central Google Scholar
Kim, M. et al. A protein interaction landscape of breast cancer. Science 374, eabf3066 (2021).
Article CAS PubMed PubMed Central Google Scholar
Swaney, D. L. et al. A protein network map of head and neck cancer reveals PIK3CA mutant drug sensitivity. Science 374, eabf2911 (2021).
Article CAS PubMed PubMed Central Google Scholar
Quackenbush, J. Microarrays—guilt by association. Science 302, 240–241 (2003).
Article CAS PubMed Google Scholar
Yanai, I. et al. Similar gene expression profiles do not imply similar tissue functions. Trends Genet. 22, 132–138 (2006).
Article CAS PubMed Google Scholar
Wang, J. et al. Proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Mol. Cell. Proteomics 16, 121–134 (2017).
Article CAS PubMed Google Scholar
Ribeiro, D. M., Ziyani, C. & Delaneau, O. Shared regulation and functional relevance of local gene co-expression revealed by single cell analysis. Commun. Biol. 5, 876 (2022).
Kustatscher, G. et al. Co-regulation map of the human proteome enables identification of protein functions. Nat. Biotechnol. 37, 1361–1371 (2019).
Article CAS PubMed PubMed Central Google Scholar
Wu, L. et al. Variation and genetic control of protein abundance in humans. Nature 499, 79–82 (2013).
Article CAS PubMed PubMed Central Google Scholar
Lapek, J. D. Jr et al. Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities. Nat. Biotechnol. 35, 983–989 (2017).
Article CAS PubMed PubMed Central Google Scholar
Li, Y. et al. Proteogenomic data and resources for pan-cancer analysis. Cancer Cell 41, 1397–1406 (2023).
Article CAS PubMed PubMed Central Google Scholar
Zhu, H. et al. Proteomics of adjacent-to-tumor samples uncovers clinically relevant biological events in hepatocellular carcinoma. Natl Sci. Rev. 10, nwad167 (2023).
Article CAS PubMed PubMed Central Google Scholar
Obayashi, T. & Kinoshita, K. Rank of correlation coefficient as a comparable measure for biological significance of gene coexpression. DNA Res. 16, 249–260 (2009).
Article CAS PubMed PubMed Central Google Scholar
Huttlin, E. L. et al. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell 184, 3022–3040 (2021).
Article CAS PubMed PubMed Central Google Scholar
Luck, K. et al. A reference map of the human binary protein interactome. Nature 580, 402–408 (2020).
Article CAS PubMed PubMed Central Google Scholar
Oughtred, R. et al. The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 30, 187–200 (2021).
Article CAS PubMed Google Scholar
Szklarczyk, D. et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49, D605–D612 (2021).
Article CAS PubMed Google Scholar
Tsitsiridis, G. et al. CORUM: the comprehensive resource of mammalian protein complexes—2022. Nucleic Acids Res. 51, D539–D545 (2023).
Article CAS PubMed Google Scholar
Shi, Z., Derow, C. K. & Zhang, B. Co-expression module analysis reveals biological processes, genomic gain, and regulatory mechanisms associated with breast cancer progression. BMC Syst. Biol. 4, 74 (2010).
Article PubMed PubMed Central Google Scholar
Barabási, A.-L. & Oltvai, Z. N. Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004).
Shi, Z., Wang, J. & Zhang, B. NetGestalt: integrating multidimensional omics data over biological networks. Nat. Methods 10, 597–598 (2013).
Article CAS PubMed PubMed Central Google Scholar
Knijnenburg, T. A., Bismeijer, T., Wessels, L. F. A. & Shmulevich, I. A multilevel pan-cancer map links gene mutations to cancer hallmarks. Chin. J. Cancer 34, 439–449 (2015).
Article CAS PubMed Google Scholar
Chen, Y., Verbeek, F. J. & Wolstencroft, K. Establishing a consensus for the hallmarks of cancer based on gene ontology and pathway annotations. BMC Bioinformatics 22, 178 (2021).
Article PubMed PubMed Central Google Scholar
Chen, X. & Cubillos-Ruiz, J. R. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat. Rev. Cancer 21, 71–88 (2021).
Article CAS PubMed Google Scholar
Vasaikar, S. et al. Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell 177, 1035–1049 (2019).
Article CAS PubMed PubMed Central Google Scholar
Zhang, B. et al. Proteogenomic characterization of human colon and rectal cancer. Nature 513, 382–387 (2014).
Article CAS PubMed PubMed Central Google Scholar
Giacinti, C. & Giordano, A. RB and cell cycle progression. Oncogene 25, 5220–5227 (2006).
留言 (0)