Moor J. The Dartmouth College Artificial Intelligence Conference: The next fifty years. 2006;27:87. https://doi.org/10.1609/aimag.v27i4.1911
Oh JH, Kerns S, Ostrer H, Powell SN, Rosenstein B, Deasy JO. Computational methods using genome-wide association studies to predict radiotherapy complications and to identify correlative molecular processes. Sci Rep. 2017;7:43381. https://doi.org/10.1038/srep43381.
Article PubMed PubMed Central CAS Google Scholar
Zhang C, Gao X, Fan B, Guo S, Lyu X, Shi J, et al. Highly accurate and effective deep neural networks in pathological diagnosis of prostate cancer. World J Urol. 2024;42(1):93. https://doi.org/10.1007/s00345-024-04775-y.
Hung AJ, Chen J, Gill IS. Automated performance metrics and machine learning algorithms to measure surgeon performance and anticipate clinical outcomes in robotic surgery. JAMA Surg. 2018;153(8):770–1. https://doi.org/10.1001/jamasurg.2018.1512.
Article PubMed PubMed Central Google Scholar
Krater M, Abuhattum S, Soteriou D, Jacobi A, Kruger T, Guck J, Herbig M. AIDeveloper: deep learning image classification in life science and beyond. Adv Sci (Weinh). 2021;8(11):e2003743. https://doi.org/10.1002/advs.202003743.
Xiong Y, Zhang Y, Zhang F, Wu C, Qin F, Yuan J. Applications of artificial intelligence in the diagnosis and prediction of erectile dysfunction: a narrative review. Int J Impot Res. 2023;35(2):95–102. https://doi.org/10.1038/s41443-022-00528-w.
NIH Consensus Conference. Impotence. NIH consensus development panel on impotence. JAMA. 1993;270(1):83–90.
Selvin E, Burnett AL, Platz EA. Prevalence and risk factors for erectile dysfunction in the US. Am J Med. 2007;120(2):151–7. https://doi.org/10.1016/j.amjmed.2006.06.010.
Ayta IA, McKinlay JB, Krane RJ. The likely worldwide increase in erectile dysfunction between 1995 and 2025 and some possible policy consequences. BJU Int. 1999;84(1):50–6. https://doi.org/10.1046/j.1464-410x.1999.00142.x.
Article PubMed CAS Google Scholar
Lin H, Zhao L, Wu H, Cao M, Jiang H. Sexual life and medication taking behaviours in young men: an online survey of 92 620 respondents in China. Int J Clin Pract. 2020;74(1):e13417. https://doi.org/10.1111/ijcp.13417.
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56. https://doi.org/10.1038/s41591-018-0300-7.
Article PubMed CAS Google Scholar
Hershenhouse JS, Cacciamani GE. Comment on: Assessing ChatGPT’s ability to answer questions pertaining to erectile dysfunction. Int J Impot Res. 2024;1–2. https://doi.org/10.1038/s41443-023-00821-2.
Chen YF, Lin CS, Hong CF, Lee DJ, Sun C, Lin HH. Design of a clinical decision support system for predicting erectile dysfunction in men using NHIRD dataset. IEEE J Biomed Health Inf. 2019;23(5):2127–37. https://doi.org/10.1109/JBHI.2018.2877595.
Jang I, Lee JU, Lee JM, Kim BH, Moon B, Hong J, Oh HB. LC-MS/MS software for screening unknown erectile dysfunction drugs and analogues: Artificial neural network classification, peak-count scoring, simple similarity search, and hybrid similarity search algorithms. Anal Chem. 2019;91(14):9119–28. https://doi.org/10.1021/acs.analchem.9b01643.
Article PubMed CAS Google Scholar
Liu H, Kshirsagar A, Niederberger C. The application of machine learning techniques to the prediction of erectile dysfunction. In: Fourth International Conference on Machine Learning and Applications (ICMLA’05). 2005. p. 6.
Adlung L, Cohen Y, Mor U, Elinav E. Machine learning in clinical decision making. Med. 2021;2(6):642–65. https://doi.org/10.1016/j.medj.2021.04.006.
·Razdan S, Siegal AR, Brewer Y, Sljivich M, Valenzuela RJ. Assessing ChatGPT’s ability to answer questions pertaining to erectile dysfunction: can our patients trust it? Int J Impot Res. 2023. https://doi.org/10.1038/s41443-023-00797-z.
ChatGPT. OpenAI. https://chatgpt.com/
Thorp HH. ChatGPT is fun, but not an author. Science. 2023;379(6630):313. https://doi.org/10.1126/science.adg7879.
Google Gemini. https://gemini.google.com/app
Microsoft CoPilot. https://copilot.microsoft.com/
Russo GI, di Mauro M, Cocci A, Cacciamani G, Cimino S, Serefoglu EC, et al. Consulting Dr Google for sexual dysfunction: a contemporary worldwide trend analysis. Int J Impot Res. 2020;32(4):455–61. https://doi.org/10.1038/s41443-019-0203-2.
Article PubMed CAS Google Scholar
Venishetty N, Raheem OA. Commentary on: frequently asked questions on erectile dysfunction: evaluating artificial intelligence answers with expert mentorship. Int J Impot Res. 2024:1–2. https://doi.org/10.1038/s41443-024-00901-x
Bi Q, Goodman KE, Kaminsky J, Lessler J. What is machine learning? A primer for the epidemiologist. Am J Epidemiol. 2019;188(12):2222–39. https://doi.org/10.1093/aje/kwz189.
Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects. Science. 2015;349(6245):255–60. https://doi.org/10.1126/science.aaa8415.
Article PubMed CAS Google Scholar
Mahmud M, Kaiser MS, Hussain A, Vassanelli S. Applications of deep learning and reinforcement learning to biological data. IEEE Trans Neural Netw Learn Syst. 2018;29(6):2063–79. https://doi.org/10.1109/TNNLS.2018.2790388.
Lindsay RK, Buchanan BG, Feigenbaum EA, Lederberg J. DENDRAL: a case study of the first expert system for scientific hypothesis formation. Artif Intell. 1993;61(2):209–61. https://doi.org/10.1016/0004-3702(93)90068-m.
Yadong Z, Xiang T, Kai X, Jintao Z, Xin F, Mingkuan Z, et al. Construction of intelligent expert system and its preliminary clinical application in the real world of diagnosis of sexual dysfunction. J Clin Urol. 2018;33(8):603–6.
Binik YM, Servan-Schreiber D, Freiwald S, Hall KS. Intelligent computer-based assessment and psychotherapy. An expert system for sexual dysfunction. J Nerv Ment Dis. 1988;176(7):387–400. https://doi.org/10.1097/00005053-198807000-00001.
Article PubMed CAS Google Scholar
Weizenbaum J. ELIZA—a computer program for the study of natural language communication between man and machine. Communications of the ACM. 9;36–45.
Selby LV, Narain WR, Russo A, Strong VE, Stetson P. Autonomous detection, grading, and reporting of postoperative complications using natural language processing. Surgery. 2018;164(6):1300–5. https://doi.org/10.1016/j.surg.2018.05.008.
Costa P, Avances C, Wagner L. [Erectile dysfunction: knowledge, wishes and attitudes. Results of a French study of 5.099 men aged 17 to 70]. Prog Urol. 2003;13(1):85–91.
Trip EJ, Elzevier HW, Pelger RCM, Beck JJH. Patients’ perceptions of nocturnal erectile function assessment with the RigiScan®. Int J Impot Res. 2024. https://doi.org/10.1038/s41443-024-01001-6.
Sng CMN, Ang D, Lee ZKK, Bhagat AAS. A comprehensive review of monitoring methods for erectile dysfunction diagnosis. Reproductive Female Child Health. 2024;3(2):e84. https://doi.org/10.1002/rfc2.84.
Rosen RC, Riley A, Wagner G, Osterloh IH, Kirkpatrick J, Mishra A. The international index of erectile function (IIEF): a multidimensional scale for assessment of erectile dysfunction. Urology. 1997;49(6):822–30. https://doi.org/10.1016/s0090-4295(97)00238-0.
Article PubMed CAS Google Scholar
Rosen RC, Cappelleri JC, Smith MD, Lipsky J, Pena BM. Development and evaluation of an abridged, 5-item version of the International Index of Erectile function (IIEF-5) as a diagnostic tool for erectile dysfunction. Int J Impot Res. 1999;11(6):319–26. https://doi.org/10.1038/sj.ijir.3900472.
Article PubMed CAS Google Scholar
Serefoglu EC, Atmaca AF, Dogan B, Altinova S, Akbulut Z, Balbay MD. Problems in understanding the Turkish translation of the international index of erectile function. J Androl. 2008;29(4):369–73. https://doi.org/10.2164/jandrol.107.004366.
Gorek M, Stief CG, Hartung C, Jonas U. Computer-assisted interpretation of electromyograms of corpora cavernosa using fuzzy logic. World J Urol. 1997;15(1):65–70. https://doi.org/10.1007/BF01275159.
留言 (0)