Artificial Intelligence for Clinical Management of Male Infertility, a Scoping Review

Infertility Prevalence Estimates 1990–2021 [Internet]. Geneva: World Health Organization; 2023. Available from: https://iris.who.int/bitstream/handle/10665/366700/9789240068315-eng.pdf?sequence=1

Isidori AM, Sansone A, Gianfrilli D. Hormonal Treatment of Male Infertility: Gonadotropins and Beyond. In: Simoni M, Huhtaniemi IT, editors. Endocrinology of the Testis and Male Reproduction [Internet]. Cham: Springer International Publishing; 2017 [cited 2024 May 5]. p. 1071–90. https://doi.org/10.1007/978-3-319-44441-3_36

Huang B, Wang Z, Kong Y, Jin M, Ma L. Global, regional and national burden of male infertility in 204 countries and territories between 1990 and 2019: an analysis of global burden of disease study. BMC Public Health. 2023;23(1):2195.

Article  PubMed  PubMed Central  Google Scholar 

Babakhanzadeh E, Nazari M, Ghasemifar S, Khodadadian A. Some of the factors involved in male infertility: a prospective review. Int J Gen Med. 2020;5(13):29–41.

Article  Google Scholar 

Durairajanayagam D. Lifestyle causes of male infertility. Arab J Urol. 2018;16(1):10–20.

Article  PubMed  PubMed Central  Google Scholar 

Diagnosis and Treatment of Infertility in Men: AUA/ASRM Guideline (2020) - American Urological Association [Internet]. [cited 2024 Jun 2]. Available from: https://www.auanet.org/guidelines-and-quality/guidelines/male-infertility

Peipert BJ, Tsai S, Montoya MN, Ferrante RC, Jain T. Analysis of state mandated insurance coverage for infertility treatment and fertility preservation in the united states. Fertil Steril. 2020;114(3):e4-5.

Article  Google Scholar 

Krzastek SC, Smith RP, Kovac JR. Future diagnostics in male infertility: genomics, epigenetics, metabolomics and proteomics. Transl Androl Urol. 2020;9(Suppl 2):S195-S19S205.

Article  PubMed  PubMed Central  Google Scholar 

Jinno M, Ozaki T, Nakamura Y, Iwashita M. Predicting sperm retrieval rates in testicular sperm extraction for azoospermia according to endocrine profiles. Reprod Med Biol. 2005;4(4):239–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ravitsky V, Kimmins S. The forgotten men: rising rates of male infertility urgently require new approaches for its prevention, diagnosis and treatment. Biol Reprod. 2019;101(5):872–4.

Article  PubMed  PubMed Central  Google Scholar 

Biggs SN, Halliday J, Hammarberg K. Psychological consequences of a diagnosis of infertility in men: a systematic analysis. Asian J Androl. 2024;26(1):10.

Article  PubMed  Google Scholar 

Health C for D and R. Artificial Intelligence and Machine Learning in Software as a Medical Device. FDA [Internet]. 2024 Mar 15 [cited 2024 May 28]; Available from: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device

Health C for D and R. Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices. FDA [Internet]. 2024 May 13 [cited 2024 May 28]; Available from: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices

Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism. 2017;69S:S36-40.

Article  PubMed  Google Scholar 

Joshi G, Jain A, Araveeti SR, Adhikari S, Garg H, Bhandari M. FDA-approved artificial intelligence and machine learning (AI/ML)-enabled medical devices: an updated landscape. Electronics. 2024;13(3):498.

Article  Google Scholar 

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.

Article  CAS  PubMed  Google Scholar 

Harrison CJ, Sidey-Gibbons CJ. Machine learning in medicine: a practical introduction to natural language processing. BMC Med Res Methodol. 2021;21(1):158.

Article  PubMed  PubMed Central  Google Scholar 

Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018;9(4):611–29.

Article  PubMed  PubMed Central  Google Scholar 

Prabakaran I, Wu Z, Lee C, Tong B, Steeman S, Koo G, et al. Gaussian mixture models for probabilistic classification of breast cancer. Cancer Res. 2019;79(13):3492–502.

Article  CAS  PubMed  Google Scholar 

Liu S, See KC, Ngiam KY, Celi LA, Sun X, Feng M. Reinforcement learning for clinical decision support in critical care: comprehensive review. J Med Internet Res. 2020;22(7): e18477.

Article  PubMed  PubMed Central  Google Scholar 

Jiang T, Gradus JL, Rosellini AJ. Supervised machine learning: A brief primer. Behav Ther. 2020;51(5):675–87.

Article  PubMed  PubMed Central  Google Scholar 

Sarker IH. AI-based modeling: techniques, applications and research issues towards automation, intelligent and smart systems. Sn Comput Sci. 2022;3(2):158.

Article  PubMed  PubMed Central  Google Scholar 

Venishetty N, Alkassis M, Raheem O. The role of artificial intelligence in male infertility: evaluation and treatment: a narrative review. Uro. 2024;4(2):23–35.

Article  Google Scholar 

Choi RY, Coyner AS, Kalpathy-Cramer J, Chiang MF, Campbell JP. Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol. 2020;9(2):14.

PubMed  PubMed Central  Google Scholar 

Agarwal A, Sharma R, Gupta S, Finelli R, Parekh N, Selvam MKP, et al. Standardized laboratory procedures, quality control and quality assurance are key requirements for accurate semen analysis in the evaluation of infertile male. World J Mens Health. 2022;40(1):52–65.

Article  PubMed  Google Scholar 

Agarwal A, Henkel R, Huang CC, Lee MS. Automation of human semen analysis using a novel artificial intelligence optical microscopic technology. Andrologia. 2019;51(11): e13440.

Article  PubMed  Google Scholar 

Lewis KC, Lam I, Nieb J, Lam G, Desai AS, Mazur DJ, et al. Inconsistent Adoption of World Health Organization V (2010) Semen Analysis Reference Ranges in the United States Eight Years After Publication. Urology. 2019;1(126):96–101.

Article  Google Scholar 

Haugen TB, Witczak O, Hicks SA, Björndahl L, Andersen JM, Riegler MA. Sperm motility assessed by deep convolutional neural networks into WHO categories. Sci Rep [Internet]. 2023 [cited 2024 Apr 1];13. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484948/

Lu JC, Huang YF, Lü NQ. Computer-aided sperm analysis: past, present and future. Andrologia. 2014;46(4):329–38.

Article  CAS  PubMed  Google Scholar 

Keihani S, Verrilli LE, Zhang C, Presson AP, Hanson HA, Pastuszak AW, et al. Semen parameter thresholds and time-to-conception in subfertile couples: how high is high enough? Hum Reprod Oxf Engl. 2021;36(8):2121–33.

Article  Google Scholar 

Finelli R, Leisegang K, Tumallapalli S, Henkel R, Agarwal A. The validity and reliability of computer-aided semen analyzers in performing semen analysis: a systematic review. Transl Androl Urol. 2021;10(7):3069–79.

Article  PubMed  PubMed Central  Google Scholar 

Tsai VF, Zhuang B, Pong YH, Hsieh JT, Chang HC. Web- and artificial intelligence-based image recognition for sperm motility analysis: verification study. JMIR Med Inform. 2020;8(11): e20031.

Article  PubMed  PubMed Central  Google Scholar 

Alameri M, Hasikin K, Kadri NA, Nasir NFM, Mohandas P, Anni JS, et al. Multistage optimization using a modified gaussian mixture model in sperm motility tracking. Comput Math Methods Med. 2021;29(2021):6953593.

Google Scholar 

Marín R, Chang V. Impact of transfer learning for human sperm segmentation using deep learning. Comput Biol Med. 2021;1(136): 104687.

Article  Google Scholar 

Somasundaram D, Nirmala M. Faster region convolutional neural network and semen tracking algorithm for sperm analysis. Comput Methods Programs Biomed. 2021;1(200): 105918.

Article  Google Scholar 

McCallum C, Riordon J, Wang Y, Kong T, You JB, Sanner S, et al. Deep learning-based selection of human sperm with high DNA integrity. Commun Biol. 2019;3(2):250.

Article  Google Scholar 

Valiuškaitė V, Raudonis V, Maskeliūnas R, Damaševičius R, Krilavičius T. Deep Learning Based Evaluation of Spermatozoid Motility for Artificial Insemination. Sensors [Internet]. 2021 Jan [cited 2024 Apr 1];21(1). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795243/

Zhao J, Bai C, Zhang Z, Zhang Q. Deep learning-based method for analyzing the optically trapped sperm rotation. Sci Rep. 2023;3(13):12575.

Article  Google Scholar 

Hicks SA, Andersen JM, Witczak O, Thambawita V, Halvorsen P, Hammer HL, et al. Machine learning-based analysis of sperm videos and participant data for male fertility prediction. Sci Rep. 2019;9(1):16770.

Article  PubMed  PubMed Central  Google Scholar 

Lesani A, Kazemnejad S, MoghimiZand M, Azadi M, Jafari H, Mofrad MRK, et al. Quantification of human sperm concentration using machine learning-based spectrophotometry. Comput Biol Med. 2020;1(127): 104061.

Article 

留言 (0)

沒有登入
gif