Infertility Prevalence Estimates 1990–2021 [Internet]. Geneva: World Health Organization; 2023. Available from: https://iris.who.int/bitstream/handle/10665/366700/9789240068315-eng.pdf?sequence=1
Isidori AM, Sansone A, Gianfrilli D. Hormonal Treatment of Male Infertility: Gonadotropins and Beyond. In: Simoni M, Huhtaniemi IT, editors. Endocrinology of the Testis and Male Reproduction [Internet]. Cham: Springer International Publishing; 2017 [cited 2024 May 5]. p. 1071–90. https://doi.org/10.1007/978-3-319-44441-3_36
Huang B, Wang Z, Kong Y, Jin M, Ma L. Global, regional and national burden of male infertility in 204 countries and territories between 1990 and 2019: an analysis of global burden of disease study. BMC Public Health. 2023;23(1):2195.
Article PubMed PubMed Central Google Scholar
Babakhanzadeh E, Nazari M, Ghasemifar S, Khodadadian A. Some of the factors involved in male infertility: a prospective review. Int J Gen Med. 2020;5(13):29–41.
Durairajanayagam D. Lifestyle causes of male infertility. Arab J Urol. 2018;16(1):10–20.
Article PubMed PubMed Central Google Scholar
Diagnosis and Treatment of Infertility in Men: AUA/ASRM Guideline (2020) - American Urological Association [Internet]. [cited 2024 Jun 2]. Available from: https://www.auanet.org/guidelines-and-quality/guidelines/male-infertility
Peipert BJ, Tsai S, Montoya MN, Ferrante RC, Jain T. Analysis of state mandated insurance coverage for infertility treatment and fertility preservation in the united states. Fertil Steril. 2020;114(3):e4-5.
Krzastek SC, Smith RP, Kovac JR. Future diagnostics in male infertility: genomics, epigenetics, metabolomics and proteomics. Transl Androl Urol. 2020;9(Suppl 2):S195-S19S205.
Article PubMed PubMed Central Google Scholar
Jinno M, Ozaki T, Nakamura Y, Iwashita M. Predicting sperm retrieval rates in testicular sperm extraction for azoospermia according to endocrine profiles. Reprod Med Biol. 2005;4(4):239–45.
Article CAS PubMed PubMed Central Google Scholar
Ravitsky V, Kimmins S. The forgotten men: rising rates of male infertility urgently require new approaches for its prevention, diagnosis and treatment. Biol Reprod. 2019;101(5):872–4.
Article PubMed PubMed Central Google Scholar
Biggs SN, Halliday J, Hammarberg K. Psychological consequences of a diagnosis of infertility in men: a systematic analysis. Asian J Androl. 2024;26(1):10.
Health C for D and R. Artificial Intelligence and Machine Learning in Software as a Medical Device. FDA [Internet]. 2024 Mar 15 [cited 2024 May 28]; Available from: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
Health C for D and R. Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices. FDA [Internet]. 2024 May 13 [cited 2024 May 28]; Available from: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism. 2017;69S:S36-40.
Joshi G, Jain A, Araveeti SR, Adhikari S, Garg H, Bhandari M. FDA-approved artificial intelligence and machine learning (AI/ML)-enabled medical devices: an updated landscape. Electronics. 2024;13(3):498.
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.
Article CAS PubMed Google Scholar
Harrison CJ, Sidey-Gibbons CJ. Machine learning in medicine: a practical introduction to natural language processing. BMC Med Res Methodol. 2021;21(1):158.
Article PubMed PubMed Central Google Scholar
Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018;9(4):611–29.
Article PubMed PubMed Central Google Scholar
Prabakaran I, Wu Z, Lee C, Tong B, Steeman S, Koo G, et al. Gaussian mixture models for probabilistic classification of breast cancer. Cancer Res. 2019;79(13):3492–502.
Article CAS PubMed Google Scholar
Liu S, See KC, Ngiam KY, Celi LA, Sun X, Feng M. Reinforcement learning for clinical decision support in critical care: comprehensive review. J Med Internet Res. 2020;22(7): e18477.
Article PubMed PubMed Central Google Scholar
Jiang T, Gradus JL, Rosellini AJ. Supervised machine learning: A brief primer. Behav Ther. 2020;51(5):675–87.
Article PubMed PubMed Central Google Scholar
Sarker IH. AI-based modeling: techniques, applications and research issues towards automation, intelligent and smart systems. Sn Comput Sci. 2022;3(2):158.
Article PubMed PubMed Central Google Scholar
Venishetty N, Alkassis M, Raheem O. The role of artificial intelligence in male infertility: evaluation and treatment: a narrative review. Uro. 2024;4(2):23–35.
Choi RY, Coyner AS, Kalpathy-Cramer J, Chiang MF, Campbell JP. Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol. 2020;9(2):14.
PubMed PubMed Central Google Scholar
Agarwal A, Sharma R, Gupta S, Finelli R, Parekh N, Selvam MKP, et al. Standardized laboratory procedures, quality control and quality assurance are key requirements for accurate semen analysis in the evaluation of infertile male. World J Mens Health. 2022;40(1):52–65.
Agarwal A, Henkel R, Huang CC, Lee MS. Automation of human semen analysis using a novel artificial intelligence optical microscopic technology. Andrologia. 2019;51(11): e13440.
Lewis KC, Lam I, Nieb J, Lam G, Desai AS, Mazur DJ, et al. Inconsistent Adoption of World Health Organization V (2010) Semen Analysis Reference Ranges in the United States Eight Years After Publication. Urology. 2019;1(126):96–101.
Haugen TB, Witczak O, Hicks SA, Björndahl L, Andersen JM, Riegler MA. Sperm motility assessed by deep convolutional neural networks into WHO categories. Sci Rep [Internet]. 2023 [cited 2024 Apr 1];13. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484948/
Lu JC, Huang YF, Lü NQ. Computer-aided sperm analysis: past, present and future. Andrologia. 2014;46(4):329–38.
Article CAS PubMed Google Scholar
Keihani S, Verrilli LE, Zhang C, Presson AP, Hanson HA, Pastuszak AW, et al. Semen parameter thresholds and time-to-conception in subfertile couples: how high is high enough? Hum Reprod Oxf Engl. 2021;36(8):2121–33.
Finelli R, Leisegang K, Tumallapalli S, Henkel R, Agarwal A. The validity and reliability of computer-aided semen analyzers in performing semen analysis: a systematic review. Transl Androl Urol. 2021;10(7):3069–79.
Article PubMed PubMed Central Google Scholar
Tsai VF, Zhuang B, Pong YH, Hsieh JT, Chang HC. Web- and artificial intelligence-based image recognition for sperm motility analysis: verification study. JMIR Med Inform. 2020;8(11): e20031.
Article PubMed PubMed Central Google Scholar
Alameri M, Hasikin K, Kadri NA, Nasir NFM, Mohandas P, Anni JS, et al. Multistage optimization using a modified gaussian mixture model in sperm motility tracking. Comput Math Methods Med. 2021;29(2021):6953593.
Marín R, Chang V. Impact of transfer learning for human sperm segmentation using deep learning. Comput Biol Med. 2021;1(136): 104687.
Somasundaram D, Nirmala M. Faster region convolutional neural network and semen tracking algorithm for sperm analysis. Comput Methods Programs Biomed. 2021;1(200): 105918.
McCallum C, Riordon J, Wang Y, Kong T, You JB, Sanner S, et al. Deep learning-based selection of human sperm with high DNA integrity. Commun Biol. 2019;3(2):250.
Valiuškaitė V, Raudonis V, Maskeliūnas R, Damaševičius R, Krilavičius T. Deep Learning Based Evaluation of Spermatozoid Motility for Artificial Insemination. Sensors [Internet]. 2021 Jan [cited 2024 Apr 1];21(1). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795243/
Zhao J, Bai C, Zhang Z, Zhang Q. Deep learning-based method for analyzing the optically trapped sperm rotation. Sci Rep. 2023;3(13):12575.
Hicks SA, Andersen JM, Witczak O, Thambawita V, Halvorsen P, Hammer HL, et al. Machine learning-based analysis of sperm videos and participant data for male fertility prediction. Sci Rep. 2019;9(1):16770.
Article PubMed PubMed Central Google Scholar
Lesani A, Kazemnejad S, MoghimiZand M, Azadi M, Jafari H, Mofrad MRK, et al. Quantification of human sperm concentration using machine learning-based spectrophotometry. Comput Biol Med. 2020;1(127): 104061.
留言 (0)