NETosis Genes and Pathomic Signature: A Novel Prognostic Marker for Ovarian Serous Cystadenocarcinoma

Xiao, X., Fang, Y., Pepin, D., Zamarin, D., Mitra, A.K.: Subpopulations of cancer associated fibroblasts serve as cancer stem cell niche in ovarian cancer via activation of non-canonical Wnt signaling. Cancer Res 83(7_Supplement), 1338–1338 (2023)

Zhang, S., Cheng, C., Lin, Z., Xiao, L., Su, X., Zheng, L., Mu, Y., Liao, M., Ouyang, R., Li, W.: The global burden and associated factors of ovarian cancer in 1990–2019: findings from the global burden of disease study 2019. BMC Public Health 22(1), 1455 (2022)

Article  PubMed  PubMed Central  Google Scholar 

Boehm, K.M., Aherne, E.A., Ellenson, L., Nikolovski, I., Alghamdi, M., Vázquez-García, I., Zamarin, D., Long Roche, K., Liu, Y., Patel, D.: Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer. Nat Cancer 3(6), 723-733 (2022)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Y., Yan, C., Yang, Z., Zhou, M., Sun, J.: Multi-omics Deep-learning Prediction of Homologous Recombination Deficiency-like Phenotype Improved Risk Stratification and Guided Therapeutic Decisions in Gynecological Cancers. IEEE J Biomed Health Inform (2023)

Zhuo, L., Meng, F., Sun, K., Zhou, M., Sun, J.: Integrated immuno-transcriptomic analysis of ovarian cancer identifies a four-chemokine-dominated subtype with antitumor immune-active phenotype and favorable prognosis. Br J Cancer 131(6), 1068-1079 (2024)

Article  CAS  PubMed  Google Scholar 

Brostjan, C., Oehler, R.: The role of neutrophil death in chronic inflammation and cancer. Cell Death Discovery 6(1), 26 (2020)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Honda, M., Kubes, P.: Neutrophils and neutrophil extracellular traps in the liver and gastrointestinal system. Nature reviews Gastroenterology & hepatology 15(4), 206-221 (2018)

Article  CAS  Google Scholar 

Boeltz, S., Amini, P., Anders, H.-J., Andrade, F., Bilyy, R., Chatfield, S., Cichon, I., Clancy, D.M., Desai, J., Dumych, T.: To NET or not to NET: current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death Differ 26(3), 395-408 (2019)

Article  PubMed  PubMed Central  Google Scholar 

Rawat, K., Syeda, S., Shrivastava, A.: Neutrophil-derived granule cargoes: Paving the way for tumor growth and progression. Cancer Metastasis Rev 40(221–244 (2021)

Dubyak, G.R., Miller, B.A., Pearlman, E.: Pyroptosis in neutrophils: Multimodal integration of inflammasome and regulated cell death signaling pathways. Immunol Rev 314(1), 229-249 (2023)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Erpenbeck, L., Schön, M.P.: Neutrophil extracellular traps: protagonists of cancer progression? Oncogene 36(18), 2483-2490 (2017)

Article  CAS  PubMed  Google Scholar 

Janssen, J.B., Medema, J.P., Gootjes, E.C., Tauriello, D.V., Verheul, H.M.: Mutant RAS and the tumor microenvironment as dual therapeutic targets for advanced colorectal cancer. Cancer Treat Rev 109,102433 (2022)

Decker, A.S., Pylaeva, E., Brenzel, A., Spyra, I., Droege, F., Hussain, T., Lang, S., Jablonska, J.: Prognostic role of blood NETosis in the progression of head and neck cancer. Cells 8(9), 946 (2019)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Y., Guo, L., Dai, Q., Shang, B., Xiao, T., Di, X., Zhang, K., Feng, L., Shou, J., Wang, Y.: A signature for pan-cancer prognosis based on neutrophil extracellular traps. J Immunother Cancer 10(6), (2022)

Shin, S.J., You, S.C., Jeon, H., Jung, J.W., An, M.H., Park, R.W., Roh, J.: Style transfer strategy for developing a generalizable deep learning application in digital pathology. Comput Methods Programs Biomed 198, 105815 (2020)

Yu, K.H., Zhang, C., Berry, G.J., Altman, R.B., Ré, C., Rubin, D., Snyder, M.: Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nature Communications 7(16), 12474 (2016)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, D., Fu, M., Chi, L., Lin, L., Cheng, J., Xue, W., Long, C., Jiang, W., Dong, X., Sui, J.: Prognostic and predictive value of a pathomics signature in gastric cancer. Nature Communications 13(1), 6903 (2022)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, R., Dai, W., Gong, J., Huang, M., Hu, T., Li, H., Lin, K., Tan, C., Hu, H., Tong, T., Cai, G.: Development of a novel combined nomogram model integrating deep learning-pathomics, radiomics and immunoscore to predict postoperative outcome of colorectal cancer lung metastasis patients. J Hematol Oncol 15(1), 11 (2022)

Article  PubMed  PubMed Central  Google Scholar 

Liu, K., Hu, J.: Classification of acute myeloid leukemia M1 and M2 subtypes using machine learning. Comput Biol Med 147, 105741 (2022)

Yang, Z., Zhang, Y., Zhuo, L., Sun, K., Meng, F., Zhou, M., Sun, J.: Prediction of prognosis and treatment response in ovarian cancer patients from histopathology images using graph deep learning: a multicenter retrospective study. Eur J Cancer 199, 113532 (2024)

Anderson, K.G., Stromnes, I.M., Greenberg, P.D.: Obstacles Posed by the Tumor Microenvironment to T cell Activity: A Case for Synergistic Therapies. Cancer Cell 31(3), 311-325 (2017)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeng, H., Chen, L., Zhang, M., Luo, Y., Ma, X.: Integration of histopathological images and multi-dimensional omics analyses predicts molecular features and prognosis in high-grade serous ovarian cancer. Gynecol Oncol 163(1), 171-180 (2021)

Article  CAS  PubMed  Google Scholar 

Liu, J., Lichtenberg, T., Hoadley, K.A., Poisson, L.M., Lazar, A.J., Cherniack, A.D., Kovatich, A.J., Benz, C.C., Levine, D.A., Lee, A.V.: An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173(2), 400–416. e11 (2018)

Holback, C., Jarosz, R., Prior, F., Mutch, D.G., Bhosale, P., Garcia, K., Lee, Y., Kirk, S., Sadow, C.A., Levine, S., Sala, E., Elnajjar, P., Morgan, T., Erickson, B.J. The Cancer Genome Atlas Ovarian Cancer Collection (TCGA-OV) (Version 4). The Cancer Imaging Archive (2016). https://doi.org/10.7937/K9/TCIA.2016.NDO1MDFQ.

Article  Google Scholar 

Wieser, V., Tsibulak, I., Reimer, D.U., Zeimet, A.G., Fiegl, H., Hackl, H., Marth, C.: An angiogenic tumor phenotype predicts poor prognosis in ovarian cancer. Gynecol Oncol 170, 290–299 (2023)

Lock, E.F., Dunson, D.B.: Bayesian consensus clustering. Bioinformatics 29(20), 2610-2616 (2013)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilkerson, M.D., Hayes, D.N.: ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26(12), 1572–1573 (2010)

Hänzelmann, S., Castelo, R., Guinney, J.: GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14, 7 (2013)

Newman, A.M., Liu, C.L., Green, M.R., Gentles, A.J., Feng, W., Xu, Y., Hoang, C.D., Diehn, M., Alizadeh, A.A.: Robust enumeration of cell subsets from tissue expression profiles. Nature methods 12(5), 453-457 (2015)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie, J., Chen, L., Tang, Q., Wei, W., Cao, Y., Wu, C., Hang, J., Zhang, K., Shi, J., Wang, M.: A necroptosis-related prognostic model of uveal melanoma was constructed by single-cell sequencing analysis and weighted co-expression network analysis based on public databases. Front Immunol 13, 847624 (2022)

Otsu, N.: A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62-66 (1979)

Article  Google Scholar 

Zhang, Y., Yang, Z., Chen, R., Zhu, Y., Liu, L., Dong, J., Zhang, Z., Sun, X., Ying, J., Lin, D., Yang, L., Zhou, M.: Histopathology images-based deep learning prediction of prognosis and therapeutic response in small cell lung cancer. npj Digital Medicine 7(1), 15 (2024)

Song, Y., Cisternino, F., Mekke, J.M., de Borst, G.J., de Kleijn, D.P.V., Pasterkamp, G., Vink, A., Glastonbury, C.A., van der Laan, S.W., Miller, C.L.: An automatic entropy method to efficiently mask histology whole-slide images. Sci Rep 13(1), 4321 (2023)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, L., Zeng, H., Zhang, M., Luo, Y., Ma, X.: Histopathological image and gene expression pattern analysis for predicting molecular features and prognosis of head and neck squamous cell carcinoma. Cancer medicine 10(13), 4615-4628 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liao, H., Xiong, T., Peng, J., Xu, L., Liao, M., Zhang, Z., Wu, Z., Yuan, K., Zeng, Y.: Classification and prognosis prediction from histopathological images of hepatocellular carcinoma by a fully automated pipeline based on machine learning. Ann Surg Oncol 27(7), 2359-2369 (2020)

Article  PubMed  Google Scholar 

Qu, W.F., Tian, M.X., Lu, H.W., Zhou, Y.F., Liu, W.R., Tang, Z., Yao, Z., Huang, R., Zhu, G.Q., Jiang, X.F., Tao, C.Y., Fang, Y., Gao, J., Wu, X.L., Chen, J.F., Zhao, Q.F., Yang, R., Chu, T.H., Zhou, J., Fan, J., Yu, J.H., Shi, Y.H.: Development of a deep pathomics score for predicting hepatocellular carcinoma recurrence after liver transplantation. Hepatol Int 17(4), 927-941 (2023)

Article  PubMed  Google Scholar 

Li, L., Liang, Y., Shao, M., Lu, S., Liao, S., Ouyang, D.: Self-supervised learning-based Multi-Scale feature Fusion Network for survival analysis from whole slide images. Comput Biol Med 153, 106482 (2023)

Nishio, M., Nishio, M., Jimbo, N., Nakane, K.: Homology-based image processing for automatic classification of histopathological images of lung tissue. Cancers (Basel) 13(6), 1192 (2021)

Article  PubMed  PubMed Central  Google Scholar 

Saednia, K., Lagree, A., Alera, M.A., Fleshner, L., Shiner, A., Law, E., Law, B., Dodington, D.W., Lu, F.-I., Tran, W.T.: Quantitative digital histopathology and machine learning to predict pathological complete response to chemotherapy in breast cancer patients using pre-treatment tumor biopsies. Sci Rep 12(1), 9690 (2022)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, H., Chen, L., Zeng, H., Liao, Q., Ji, J., Ma, X.: Integrative analysis of histopathological images and genomic data in colon adenocarcinoma. Front Oncol 11, 636451 (2021)

De Jay, N., Papillon-Cavanagh, S., Olsen, C., El-Hachem, N., Bontempi, G., Haibe-Kains, B.: mRMRe: an R package for parallelized mRMR ensemble feature selection. Bioinformatics 29(18), 2365-2368 (2013)

Article  PubMed  Google Scholar 

Su, R., Liu, X., Wei, L.: MinE-RFE: determine the optimal subset from RFE by minimizing the subset-accuracy–defined energy. Brief Bioinform 21(2), 687-698 (2020)

Article 

留言 (0)

沒有登入
gif