Xiao, X., Fang, Y., Pepin, D., Zamarin, D., Mitra, A.K.: Subpopulations of cancer associated fibroblasts serve as cancer stem cell niche in ovarian cancer via activation of non-canonical Wnt signaling. Cancer Res 83(7_Supplement), 1338–1338 (2023)
Zhang, S., Cheng, C., Lin, Z., Xiao, L., Su, X., Zheng, L., Mu, Y., Liao, M., Ouyang, R., Li, W.: The global burden and associated factors of ovarian cancer in 1990–2019: findings from the global burden of disease study 2019. BMC Public Health 22(1), 1455 (2022)
Article PubMed PubMed Central Google Scholar
Boehm, K.M., Aherne, E.A., Ellenson, L., Nikolovski, I., Alghamdi, M., Vázquez-García, I., Zamarin, D., Long Roche, K., Liu, Y., Patel, D.: Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer. Nat Cancer 3(6), 723-733 (2022)
Article CAS PubMed PubMed Central Google Scholar
Zhang, Y., Yan, C., Yang, Z., Zhou, M., Sun, J.: Multi-omics Deep-learning Prediction of Homologous Recombination Deficiency-like Phenotype Improved Risk Stratification and Guided Therapeutic Decisions in Gynecological Cancers. IEEE J Biomed Health Inform (2023)
Zhuo, L., Meng, F., Sun, K., Zhou, M., Sun, J.: Integrated immuno-transcriptomic analysis of ovarian cancer identifies a four-chemokine-dominated subtype with antitumor immune-active phenotype and favorable prognosis. Br J Cancer 131(6), 1068-1079 (2024)
Article CAS PubMed Google Scholar
Brostjan, C., Oehler, R.: The role of neutrophil death in chronic inflammation and cancer. Cell Death Discovery 6(1), 26 (2020)
Article CAS PubMed PubMed Central Google Scholar
Honda, M., Kubes, P.: Neutrophils and neutrophil extracellular traps in the liver and gastrointestinal system. Nature reviews Gastroenterology & hepatology 15(4), 206-221 (2018)
Boeltz, S., Amini, P., Anders, H.-J., Andrade, F., Bilyy, R., Chatfield, S., Cichon, I., Clancy, D.M., Desai, J., Dumych, T.: To NET or not to NET: current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death Differ 26(3), 395-408 (2019)
Article PubMed PubMed Central Google Scholar
Rawat, K., Syeda, S., Shrivastava, A.: Neutrophil-derived granule cargoes: Paving the way for tumor growth and progression. Cancer Metastasis Rev 40(221–244 (2021)
Dubyak, G.R., Miller, B.A., Pearlman, E.: Pyroptosis in neutrophils: Multimodal integration of inflammasome and regulated cell death signaling pathways. Immunol Rev 314(1), 229-249 (2023)
Article CAS PubMed PubMed Central Google Scholar
Erpenbeck, L., Schön, M.P.: Neutrophil extracellular traps: protagonists of cancer progression? Oncogene 36(18), 2483-2490 (2017)
Article CAS PubMed Google Scholar
Janssen, J.B., Medema, J.P., Gootjes, E.C., Tauriello, D.V., Verheul, H.M.: Mutant RAS and the tumor microenvironment as dual therapeutic targets for advanced colorectal cancer. Cancer Treat Rev 109,102433 (2022)
Decker, A.S., Pylaeva, E., Brenzel, A., Spyra, I., Droege, F., Hussain, T., Lang, S., Jablonska, J.: Prognostic role of blood NETosis in the progression of head and neck cancer. Cells 8(9), 946 (2019)
Article CAS PubMed PubMed Central Google Scholar
Zhang, Y., Guo, L., Dai, Q., Shang, B., Xiao, T., Di, X., Zhang, K., Feng, L., Shou, J., Wang, Y.: A signature for pan-cancer prognosis based on neutrophil extracellular traps. J Immunother Cancer 10(6), (2022)
Shin, S.J., You, S.C., Jeon, H., Jung, J.W., An, M.H., Park, R.W., Roh, J.: Style transfer strategy for developing a generalizable deep learning application in digital pathology. Comput Methods Programs Biomed 198, 105815 (2020)
Yu, K.H., Zhang, C., Berry, G.J., Altman, R.B., Ré, C., Rubin, D., Snyder, M.: Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nature Communications 7(16), 12474 (2016)
Article CAS PubMed PubMed Central Google Scholar
Chen, D., Fu, M., Chi, L., Lin, L., Cheng, J., Xue, W., Long, C., Jiang, W., Dong, X., Sui, J.: Prognostic and predictive value of a pathomics signature in gastric cancer. Nature Communications 13(1), 6903 (2022)
Article CAS PubMed PubMed Central Google Scholar
Wang, R., Dai, W., Gong, J., Huang, M., Hu, T., Li, H., Lin, K., Tan, C., Hu, H., Tong, T., Cai, G.: Development of a novel combined nomogram model integrating deep learning-pathomics, radiomics and immunoscore to predict postoperative outcome of colorectal cancer lung metastasis patients. J Hematol Oncol 15(1), 11 (2022)
Article PubMed PubMed Central Google Scholar
Liu, K., Hu, J.: Classification of acute myeloid leukemia M1 and M2 subtypes using machine learning. Comput Biol Med 147, 105741 (2022)
Yang, Z., Zhang, Y., Zhuo, L., Sun, K., Meng, F., Zhou, M., Sun, J.: Prediction of prognosis and treatment response in ovarian cancer patients from histopathology images using graph deep learning: a multicenter retrospective study. Eur J Cancer 199, 113532 (2024)
Anderson, K.G., Stromnes, I.M., Greenberg, P.D.: Obstacles Posed by the Tumor Microenvironment to T cell Activity: A Case for Synergistic Therapies. Cancer Cell 31(3), 311-325 (2017)
Article CAS PubMed PubMed Central Google Scholar
Zeng, H., Chen, L., Zhang, M., Luo, Y., Ma, X.: Integration of histopathological images and multi-dimensional omics analyses predicts molecular features and prognosis in high-grade serous ovarian cancer. Gynecol Oncol 163(1), 171-180 (2021)
Article CAS PubMed Google Scholar
Liu, J., Lichtenberg, T., Hoadley, K.A., Poisson, L.M., Lazar, A.J., Cherniack, A.D., Kovatich, A.J., Benz, C.C., Levine, D.A., Lee, A.V.: An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173(2), 400–416. e11 (2018)
Holback, C., Jarosz, R., Prior, F., Mutch, D.G., Bhosale, P., Garcia, K., Lee, Y., Kirk, S., Sadow, C.A., Levine, S., Sala, E., Elnajjar, P., Morgan, T., Erickson, B.J. The Cancer Genome Atlas Ovarian Cancer Collection (TCGA-OV) (Version 4). The Cancer Imaging Archive (2016). https://doi.org/10.7937/K9/TCIA.2016.NDO1MDFQ.
Wieser, V., Tsibulak, I., Reimer, D.U., Zeimet, A.G., Fiegl, H., Hackl, H., Marth, C.: An angiogenic tumor phenotype predicts poor prognosis in ovarian cancer. Gynecol Oncol 170, 290–299 (2023)
Lock, E.F., Dunson, D.B.: Bayesian consensus clustering. Bioinformatics 29(20), 2610-2616 (2013)
Article CAS PubMed PubMed Central Google Scholar
Wilkerson, M.D., Hayes, D.N.: ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26(12), 1572–1573 (2010)
Hänzelmann, S., Castelo, R., Guinney, J.: GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14, 7 (2013)
Newman, A.M., Liu, C.L., Green, M.R., Gentles, A.J., Feng, W., Xu, Y., Hoang, C.D., Diehn, M., Alizadeh, A.A.: Robust enumeration of cell subsets from tissue expression profiles. Nature methods 12(5), 453-457 (2015)
Article CAS PubMed PubMed Central Google Scholar
Xie, J., Chen, L., Tang, Q., Wei, W., Cao, Y., Wu, C., Hang, J., Zhang, K., Shi, J., Wang, M.: A necroptosis-related prognostic model of uveal melanoma was constructed by single-cell sequencing analysis and weighted co-expression network analysis based on public databases. Front Immunol 13, 847624 (2022)
Otsu, N.: A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62-66 (1979)
Zhang, Y., Yang, Z., Chen, R., Zhu, Y., Liu, L., Dong, J., Zhang, Z., Sun, X., Ying, J., Lin, D., Yang, L., Zhou, M.: Histopathology images-based deep learning prediction of prognosis and therapeutic response in small cell lung cancer. npj Digital Medicine 7(1), 15 (2024)
Song, Y., Cisternino, F., Mekke, J.M., de Borst, G.J., de Kleijn, D.P.V., Pasterkamp, G., Vink, A., Glastonbury, C.A., van der Laan, S.W., Miller, C.L.: An automatic entropy method to efficiently mask histology whole-slide images. Sci Rep 13(1), 4321 (2023)
Article CAS PubMed PubMed Central Google Scholar
Chen, L., Zeng, H., Zhang, M., Luo, Y., Ma, X.: Histopathological image and gene expression pattern analysis for predicting molecular features and prognosis of head and neck squamous cell carcinoma. Cancer medicine 10(13), 4615-4628 (2021)
Article CAS PubMed PubMed Central Google Scholar
Liao, H., Xiong, T., Peng, J., Xu, L., Liao, M., Zhang, Z., Wu, Z., Yuan, K., Zeng, Y.: Classification and prognosis prediction from histopathological images of hepatocellular carcinoma by a fully automated pipeline based on machine learning. Ann Surg Oncol 27(7), 2359-2369 (2020)
Qu, W.F., Tian, M.X., Lu, H.W., Zhou, Y.F., Liu, W.R., Tang, Z., Yao, Z., Huang, R., Zhu, G.Q., Jiang, X.F., Tao, C.Y., Fang, Y., Gao, J., Wu, X.L., Chen, J.F., Zhao, Q.F., Yang, R., Chu, T.H., Zhou, J., Fan, J., Yu, J.H., Shi, Y.H.: Development of a deep pathomics score for predicting hepatocellular carcinoma recurrence after liver transplantation. Hepatol Int 17(4), 927-941 (2023)
Li, L., Liang, Y., Shao, M., Lu, S., Liao, S., Ouyang, D.: Self-supervised learning-based Multi-Scale feature Fusion Network for survival analysis from whole slide images. Comput Biol Med 153, 106482 (2023)
Nishio, M., Nishio, M., Jimbo, N., Nakane, K.: Homology-based image processing for automatic classification of histopathological images of lung tissue. Cancers (Basel) 13(6), 1192 (2021)
Article PubMed PubMed Central Google Scholar
Saednia, K., Lagree, A., Alera, M.A., Fleshner, L., Shiner, A., Law, E., Law, B., Dodington, D.W., Lu, F.-I., Tran, W.T.: Quantitative digital histopathology and machine learning to predict pathological complete response to chemotherapy in breast cancer patients using pre-treatment tumor biopsies. Sci Rep 12(1), 9690 (2022)
Article CAS PubMed PubMed Central Google Scholar
Li, H., Chen, L., Zeng, H., Liao, Q., Ji, J., Ma, X.: Integrative analysis of histopathological images and genomic data in colon adenocarcinoma. Front Oncol 11, 636451 (2021)
De Jay, N., Papillon-Cavanagh, S., Olsen, C., El-Hachem, N., Bontempi, G., Haibe-Kains, B.: mRMRe: an R package for parallelized mRMR ensemble feature selection. Bioinformatics 29(18), 2365-2368 (2013)
Su, R., Liu, X., Wei, L.: MinE-RFE: determine the optimal subset from RFE by minimizing the subset-accuracy–defined energy. Brief Bioinform 21(2), 687-698 (2020)
留言 (0)