H. Arnold, F. Bourseaux, N. Brock. Chemotherapeutic Action of a Cyclic Nitrogen Mustard Phosphamide Ester (B 518-ASTA) in Experimental Tumours of the Rat. Nature 181 (1958) 931-931. https://doi.org/10.1038/181931a0.
N. Helsby, M. Yong, K. Burns, M. Findlay, D. Porter. Cyclophosphamide bioactivation pharmacogenetics in breast cancer patients. Cancer Chemotherapy and Pharmacology 88 (2021) 533-542. https://doi.org/10.1007/s00280-021-04307-0.
I. El-Serafi, S. Steele. Cyclophosphamide Pharmacogenomic Variation in Cancer Treatment and Its Effect on Bioactivation and Pharmacokinetics. Advances in Pharmacological and Pharmaceutical Sciences 2024 (2024) 862706. https://doi.org/10.1155/2024/4862706.
E. Dabbish, S. Scoditti, M.N.I. Shehata, I. Ritacco, M.A.A. Ibrahim, T. Shoeib, E. Sicilia. Insights on cyclophosphamide metabolism and anticancer mechanism of action: A computational study. Journal of Computational Chemistry 45 (2024) 663-670. https://doi.org/10.1002/jcc.27280.
J.J. Lokich, A. Bothe. Phase-I Study of Continuous Infusion Cyclophosphamide for Protracted Durations: A Preliminary Report. Cancer Drug Delivery 1 (1984) 329-332. https://doi.org/10.1089/cdd.1984.1.329.
M.J. Moore. Clinical Pharmacokinetics of Cyclophosphamide. Clinical Pharmacokinetics 20 (1991) 194-208. https://doi.org/10.2165/00003088-199120030-00002.
R. Samaritani, G. Corrado, E. Vizza, C. Sbiroli. Cyclophosphamide “metronomic” chemotherapy for palliative treatment of a young patient with advanced epithelial ovarian cancer. BMC Cancer 7 (2007) 65. https://doi.org/10.1186/1471-2407-7-65.
M. Petri, R.A. Brodsky, R.J. Jones, D. Gladstone, M. Fillius, L.S. Magder. High‐dose cyclophosphamide versus monthly intravenous cyclophosphamide for systemic lupus erythematosus: A prospective randomized trial. Arthritis & Rheumatism 62 (2010) 1487-1493. https://doi.org/10.1002/art.27371.
Z. Cai, L. Gao, K. Hu, Q.-M. Wang. Parthenolide enhances the metronomic chemotherapy effect of cyclophosphamide in lung cancer by inhibiting the NF-kB signaling pathway. World Journal of Clinical Oncology 15 (2024) 895-907. https://doi.org/10.5306/wjco.v15.i7.895.
S. Cetik Yildiz, C. Demir, M. Cengiz, H. Irmak, B.P. Cengiz, A. Ayhanci. In Vitro Antitumor and Antioxidant Capacity as well as Ameliorative Effects of Fermented Kefir on Cyclophosphamide-Induced Toxicity on Cardiac and Hepatic Tissues in Rats. Biomedicines 12 (2024) 1199. https://doi.org/10.3390/biomedicines12061199.
T. Drie, M.I. Alsamman, R. Tarcha, G. Haidar, M. Kudsi. Successful pregnancy after cyclophosphamide therapy for systemic lupus erythematosus: a case report. Annals of Medicine & Surgery 86 (2024) 1156-1160. https://doi.org/10.1097/MS9.0000000000001641.
S. Saracchini, L. Foltran, F. Tuccia, A. Bassini, S. Sulfaro, E. Micheli, A. Del Conte, M. Bertola, M. Gion, M. Lorenzon, S. Tumolo. Phase II study of liposome-encapsulated doxorubicin plus cyclophosphamide, followed by sequential trastuzumab plus docetaxel as primary systemic therapy for breast cancer patients with HER2 overexpression or amplification. The Breast 22 (2013) 1101-1107. https://doi.org/10.1016/j.breast.2013.09.001.
K. Żółtowska, U. Piotrowska, E. Oledzka, U. Luchowska, M. Sobczak, A. Bocho-Janiszewska. Development of biodegradable polyesters with various microstructures for highly controlled release of epirubicin and cyclophosphamide. European Journal of Pharmaceutical Sciences 96 (2017) 440-448. https://doi.org/10.1016/j.ejps.2016.10.014.
F. Abedin, M.R. Anwar, R. Asmatulu, S.-Y. Yang. Albumin-based micro-composite drug carriers with dual chemo-agents for targeted breast cancer treatment. Journal of Biomaterials Applications 30 (2015) 38-49. https://doi.org/10.1177/0885328215569614.
A.A.Majeed, The assessment of Cyclophosphamide chemotherapy effect loading-PLGA nanoparticles against ovarian cancer cells line (OVCAR-4 & PEO1). Journal of Pharmaceutical Negative Results 13 (2022) 39-43. https://www.pnrjournal.com/index.php/home/article/view/180.
Y.L. Ding, S.S. Ding, G.F. Ding. Preparation and Characterization of Cyclophosphamide-Loaded Chitosan Microspheres. Advanced Materials Research 621 (2012) 130-133. https://doi.org/10.4028/www.scientific.net/AMR.621.130.
N.O. Zhila, K.Yu. Sapozhnikova, E.G. Kiselev, E.I. Shishatskaya, T.G. Volova. Biosynthesis of Polyhydroxyalkanoates in Cupriavidus necator B-10646 on Saturated Fatty Acids. Polymers 16 (2024) 1294. https://doi.org/10.3390/polym16091294.
A. V. Murueva, A.E. Dudaev, E.I. Shishatskaya, F.D.E. Ghorabe, I. V. Nemtsev, A. V. Lukyanenko, T.G. Volova. Biodegradable polymer casting films for drug delivery and cell culture. Giant 19 (2024) 100314. https://doi.org/10.1016/j.giant.2024.100314.
N.O. Zhila, E.G. Kiselev, V. V. Volkov, O.Ya. Mezenova, K.Yu. Sapozhnikova, E.I. Shishatskaya, T.G. Volova. Properties of Degradable Polyhydroxyalkanoates Synthesized from New Waste Fish Oils (WFOs). International Journal of Molecular Sciences 24 (2023) 14919. https://doi.org/10.3390/ijms241914919.
L.Q. Fook, H.T. Tan, M. Lakshmanan, I. Zainab-L, A. Ahmad, S.L. Ang, K. Sudesh. Polyhydroxyalkanoate Biosynthesis from Waste Cooking Oils by Cupriavidus necator Strains Harbouring phaCBP-M-CPF4. Journal of Polymers and the Environment 32 (2024) 3490-3502. https://doi.org/10.1007/s10924-023-03166-5.
S. Bano, A.A. Aslam, A. Khan, A. Shabbir, F. Qayyum, N. Wahab, A. Jabar, I. Ul Islam, S.L. Ng. A mini-review on polyhydroxyalkanoates: Synthesis, extraction, characterization, and applications. Process Biochemistry 146 (2024) 250-261. https://doi.org/10.1016/j.procbio.2024.07.033.
R. Ma, J. Li, R. Tyagi, X. Zhang. Carbon dioxide and methane as carbon source for the production of polyhydroxyalkanoates and concomitant carbon fixation. Bioresource Technology 391 (2024) 129977. https://doi.org/10.1016/j.biortech.2023.129977.
A.B. Kharissova, O. V. Kharissova, B.I. Kharisov, Y.P. Méndez. Carbon negative footprint materials: A review. Nano-Structures & Nano-Objects 37 (2024) 101100. https://doi.org/10.1016/j.nanoso.2024.101100.
T.G. Volova, E.I. Shishatskaya, Cupriavidus eutrophus VKPM B-10646 Bacteria Strain — Producer of Polyhydroxyalkanoates and Production Method Thereof, RU2439143C1, 2012. https://patents.google.com/patent/RU2439143C1/en.
Z.H. Mohamed, S.M. Amer, A.M. El-Kousasy. Colorimetric determination of cyclophosphamide and ifosphamide. Journal of Pharmaceutical and Biomedical Analysis 12 (1994) 1131-1136. https://doi.org/10.1016/0731-7085(94)E0020-2.
A.P. Li, A. Uzgare, Y.S. LaForge. Definition of metabolism-dependent xenobiotic toxicity with co-cultures of human hepatocytes and mouse 3T3 fibroblasts in the novel integrated discrete multiple organ co-culture (IdMOC) experimental system: Results with model toxicants aflatoxin B1, cyclophosphamide and tamoxifen. Chemico-Biological Interactions 199 (2012) 1-8. https://doi.org/10.1016/j.cbi.2012.05.003.
C.A. Schneider, W.S. Rasband, K.W. Eliceiri. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9 (2012) 671-675. https://doi.org/10.1038/nmeth.2089.
S. Rodrigues, A. da Costa, N. Flórez-Fernández, M. Torres, M. Faleiro, F. Buttini, A. Grenha. Inhalable Spray-Dried Chondroitin Sulphate Microparticles: Effect of Different Solvents on Particle Properties and Drug Activity. Polymers 12 (2020) 425. https://doi.org/10.3390/polym12020425.
G. Troiano, M. Figa, Abhimanyu Sabnis, Drug loaded polymeric nanoparticles and methods of making and using same, US 8.420,123 B2, 2013. https://patentimages.storage.googleapis.com/61/6c/13/c52dc4a0d5e5b2/US8420123.pdf
J.K. Staas, T.R. Tice, B.W. Hudson, A. J. Tipton, Methods for manufacturing delivery devices and devices thereof, US 8,541,028 B2, 2013. https://patentimages.storage.googleapis.com/cd/73/7d/f88544b7ed22c4/US8541028.pdf
A. Dorokhin, S. Lipaikin, G. Ryltseva, E. Shishatskaya, S.Kachin. Preparation and Characterization of Rifampicin-Loaded poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Microparticles. Journal of Siberian Federal University. Chemistry 16(2) (2023) 159-167. https://elib.sfu-kras.ru/bitstream/handle/2311/150144/01_Dorokhin.pdf
F. Masood, P. Chen, T. Yasin, N. Fatima, F. Hasan, A. Hameed. Encapsulation of Ellipticine in poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) based nanoparticles and its in vitro application. Materials Science and Engineering: C 33 (2013) 1054-1060. https://doi.org/10.1016/j.msec.2012.11.025.
S. Lightfoot Vidal, C. Rojas, R. Bouza Padín, M. Pérez Rivera, A. Haensgen, M. González, S. Rodríguez-Llamazares. Synthesis and characterization of polyhydroxybutyrate- co -hydroxyvalerate nanoparticles for encapsulation of quercetin. Journal of Bioactive and Compatible Polymers 31 (2016) 439-452. https://doi.org/10.1177/0883911516635839.
A. Shershneva, A. Murueva, E. Nikolaeva, E. Shishatskaya, T. Volova. Novel spray-dried PHA microparticles for antitumor drug release. Drying Technology 36 (2018) 1387-1398. https://doi.org/10.1080/07373937.2017.1407940.
G.A. Senhorini, S.F. Zawadzki, P. V. Farago, S.M.W. Zanin, F.A. Marques. Microparticles of poly(hydroxybutyrate-co-hydroxyvalerate) loaded with andiroba oil: Preparation and characterization. Materials Science and Engineering: C 32 (2012) 1121-1126. https://doi.org/10.1016/j.msec.2012.02.027.
A.V. Vladimirova, A. V. Murueva, A. M. Shershneva, S.V. Prudnikova, A.V. Shabanov, E.I. Shishatskaya. Biocompatible Systems for Controlled Delivery of Antiseptics for Topical Application. Journal of Siberian Federal University. Biology 17 (2024) 19-32. https://elib.sfu-kras.ru/bitstream/handle/2311/152806/02_Vladimirova.pdf?sequence=1
M.E. de Jonge, A.D.R. Huitema, S. Rodenhuis, J.H. Beijnen. Clinical Pharmacokinetics of Cyclophosphamide. Clinical Pharmacokinetics 44 (2005) 1135-1164. https://doi.org/10.2165/00003088-200544110-00003.
Y. Zhang, S. Fei, M. Yu, Y. Guo, H. He, Y. Zhang, T. Yin, H. Xu, X. Tang. Injectable sustained release PLA microparticles prepared by solvent evaporation-media milling technology. Drug Development and Industrial Pharmacy 44 (2018) 1591-1597. https://doi.org/10.1080/03639045.2018.1483382.
E. Yapar, Ö. İnal, Y. Özkan, T. Baykara. Injectable In Situ Forming Microparticles: A Novel Drug Delivery System. Tropical Journal of Pharmaceutical Research 11 (2012) 307-318. https://doi.org/10.4314/tjpr.v11i2.19.
A. Cambronero-Rojas, P. Torres-Vergara, R. Godoy, C. von Plessing, J. Sepúlveda, C. Gómez-Gaete. Capreomycin oleate microparticles for intramuscular administration: Preparation, in vitro release and preliminary in vivo evaluation. Journal of Controlled Release 209 (2015) 229-237. https://doi.org/10.1016/j.jconrel.2015.05.001.
E.I. Shishatskaya, O.N. Voinova, A. V. Goreva, O.A. Mogilnaya, T.G. Volova. Tissue reaction to intramuscular injection of resorbable polymer microparticles. Bulletin of Experimental Biology and Medicine 144 (2007) 786-790. https://doi.org/10.1007/s10517-007-0432-0.
S.P. Schwendeman, R.B. Shah, B.A. Bailey, A.S. Schwendeman. Injectable controlled release depots for large molecules. Journal of Controlled Release 190 (2014) 240-253. https://doi.org/10.1016/j.jconrel.2014.05.057.
R.L. Juliano. Factors affecting the clearance kinetics and tissue distribution of liposomes, microspheres and emulsions. Advanced Drug Delivery Reviews 2 (1988) 31-54. https://doi.org/10.1016/0169-409X(88)90004-X.
D. Liu, D.T. Auguste. Cancer targeted therapeutics: From molecules to drug delivery vehicles. Journal of Controlled Release 219 (2015) 632-643. https://doi.org/10.1016/j.jconrel.2015.08.041.
A. Kumar, C.K. Dixit. Methods for characterization of nanoparticles. in: Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids, Elsevier, 2017: p. 43-58. https://doi.org/10.1016/B978-0-08-100557-6.00003-1.
A.M. Shershneva, A. V. Murueva, E.I. Shishatskaya, T.G. Volova. Study of electrokinetic potential of drug micro-carriers prepared from resorbable polymers bioplastotan. Biophysics 59 (2014) 561-567. https://doi.org/10.1134/S000635091404023X.
R. Singh, J.W. Lillard. Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology 86 (2009) 215-223. https://doi.org/10.1016/j.yexmp.2008.12.004.
I. Corrado, R. Di Girolamo, C. Regalado-González, C. Pezzella. Polyhydroxyalkanoates-Based Nanoparticles as Essential Oil Carriers. Polymers 14 (2022) 166. https://doi.org/10.3390/polym14010166.
A. V. Murueva, A.M. Shershneva, I. V. Nemtsev, E.I. Shishatskaya, T.G. Volova. Collagen conjugation to carboxyl-modified poly(3-hydroxybutyrate) microparticles: preparation, characterization and evaluation in vitro. Journal of Polymer Research 29 (2022). https://doi.org/10.1007/s10965-022-03181-5.
S.Y. Lipaikin, I.A. Yaremenko, A.O. Terent’ev, T.G. Volova, E.I. Shishatskaya. Development of Biodegradable Delivery Systems Containing Novel 1,2,4-Trioxolane Based on Bacterial Polyhydroxyalkanoates. Advances in Polymer Technology 2022 (2022) 6353909. https://doi.org/10.1155/2022/6353909.
Q. Xu, A. Crossley, J. Czernuszka. Preparation and characterization of negatively charged poly(lactic-co-glycolic acid) microspheres. Journal of Pharmaceutical Sciences 98 (2009) 2377-2389. https://doi.org/10.1002/jps.21612.
G. Ruan, S.-S. Feng. Preparation and characterization of poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) microspheres for controlled release of paclitaxel. Biomaterials 24 (2003) 5037-5044. https://doi.org/10.1016/S0142-9612(03)00419-8.
A.M. Shershneva, A. V. Murueva, N.O. Zhila, T.G. Volova. Antifungal activity of P3HB microparticles containing tebuconazole. Journal of Environmental Science and Health, Part B 54 (2019) 196-204. https://doi.org/10.1080/03601234.2018.1550299.
E. Campos, J. Branquinho, A.S. Carreira, A. Carvalho, P. Coimbra, P. Ferreira, M.H. Gil. Designing polymeric microparticles for biomedical and industrial applications. European Polymer Journal 49 (2013) 2005-2021. https://doi.org/10.1016/j.eurpolymj.2013.04.033.
D. Sendil, I. Gürsel, D. L. Wise, V. Hasırcı. Antibiotic release from biodegradable PHBV microparticles. Journal of Controlled Release 59 (1999) 207-217. https://doi.org/10.1016/S0168-3659(98)00195-3.
W. Huang, Y. Wang, L. Ren, C. Du, X. Shi. A novel PHBV/HA microsphere releasing system loaded with alendronate. Materials Science and Engineering: C 29 (2009) 2221-2225. https://doi.org/10.1016/j.msec.2009.05.015.
N. Pettinelli, S. Rodríguez-Llamazares, Y. Farrag, R. Bouza, L. Barral, S. Feijoo-Bandín, F. Lago. Poly(hydroxybutyrate-co-hydroxyvalerate) microparticles embedded in κ-carrageenan/locust bean gum hydrogel as a dual drug delivery carrier. International Journal of Biological Macromolecules 146 (2020) 110-118. https://doi.org/10.1016/j.ijbiomac.2019.12.193.
C. Zhang, Y. Dong, L. Zhao. Preparation and characterization of novel microparticles based on poly(3-hydroxybutyrate-co-3-hydroxyoctanoate). Journal of Microencapsulation 31 (2014) 9-15. https://doi.org/10.3109/02652048.2013.799241.
B. Remila, I. Zembouai, L. Zaidi, A. Alane, M. Kaci, A. Kervoelen, S. Bruzaud. Investigations on structure and properties of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) reinforced by diss fibers: Effect of various surface treatments. Industrial Crops and Products 221 (2024) 119302. https://doi.org/10.1016/j.indcrop.2024.119302.
Z. Keshtmand, S.N. Naimi, Z. Koureshi Piran, P. Poorjafari Jafroodi, M. Tavakkoli Yaraki. Enhanced anticancer effect of Artemisia turcomanica extract in niosomal formulation on breast cancer cells: In-vitro study. Nano-Structures & Nano-Objects 35 (2023) 101030. https://doi.org/10.1016/j.nanoso.2023.101030.
L. Li, L. Jing, Z. Tang, J. Du, Y. Zhong, X. Liu, M. Yuan. Dual-targeting liposomes modified with BTP-7 and pHA for combined delivery of TCPP and TMZ to enhance the anti-tumour effect in glioblastoma cells. Journal of Microencapsulation 41 (2024) 419-433. https://doi.org/10.1080/02652048.2024.2376114.
Z. Salmasi, H. Kamali, H. Rezaee, F. Nazeran, Z. Jafari, F. Eisvand, M. Teymouri, E. Khordad, J. Mosafer. Simultaneous therapeutic and diagnostic applications of magnetic PLGA nanoparticles loaded with doxorubicin in rabbit. Drug Delivery and Translational Research (2024). https://doi.org/10.1007/s13346-024-01693-9.
S. Sur, A. Rathore, V. Dave, K.R. Reddy, R.S. Chouhan, V. Sadhu. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Structures & Nano-Objects 20 (2019) 100397. https://doi.org/10.1016/j.nanoso.2019.100397.
A. Estrada-Monje, M.A. Silva-Goujon, I. Rodríguez-Sánchez, A.S. Conejo-Dávila, C.I. Piñón-Balderrama, A. Zaragoza-Estrada, L.A. Baldenegro-Pérez, E.A. Zaragoza-Contreras. Effect of the Addition of PLA on the Thermal and Mechanical Properties of Reprocessed HDPE. Polymers 16 (2024) 2387. https://doi.org/10.3390/polym16162387.
N. Zafar, A. Mahmood, R.M. Sarfraz, H. Ijaz, M.U. Ashraf, S. Mehr. Facile synthesis of β-cyclodextrin-cyclophosphamide complex-loaded hydrogel for controlled release drug delivery. Polymer Bulletin 80 (2023) 10939-10971. https://doi.org/10.1007/s00289-022-04567-7.
P. Kommavarapu, A. Maruthapillai, A. Ravikiran, P. Kamaraj. Sorption-Desorption Behavior and Characterization of Cyclophosphamide. Chemical Science Transactions 2 (2013). http://www.e-journals.in/pdf/v2ns1/s135-s140.pdf.
N.O. Zhila, K.Yu. Sapozhnikova, E.G. Kiselev, E.I. Shishatskaya, T.G. Volova. Synthesis and Properties of Polyhydroxyalkanoates on Waste Fish Oil from the Production of Canned Sprats. Processes 11 (2023) 2113. https://doi.org/10.3390/pr11072113.
C.C. Nwazojie, J.D. Obayemi, A.A. Salifu, S.M. Borbor-Sawyer, V.O. Uzonwanne, C.E. Onyekanne, U.M. Akpan, K.C. Onwudiwe, J.C. Oparah, O.S. Odusanya, W.O. Soboyejo. Targeted drug-loaded PLGA-PCL microspheres for specific and localized treatment of triple negative breast cancer. Journal of Materials Science: Materials in Medicine 34 (2023) 41. https://doi.org/10.1007/s10856-023-06738-y.
S.M. Jusu, J.D. Obayemi, A.A. Salifu, C.C. Nwazojie, V. Uzonwanne, O.S. Odusanya, W.O. Soboyejo. Drug-encapsulated blend of PLGA-PEG microspheres: in vitro and in vivo study of the effects of localized/targeted drug delivery on the treatment of triple-negative breast cancer. Scientific Reports 10 (2020) 14188 . https://doi.org/10.1038/s41598-020-71129-0.
P. V. Farago, R.P. Raffin, A.R. Pohlmann, S.S. Guterres, S.F. Zawadzki. Physicochemical characterization of a hydrophilic model drug-loaded PHBV microparticles obtained by the double emulsion/solvent evaporation technique. Journal of the Brazilian Chemical Society 19 (2008) 1298-1305. https://doi.org/10.1590/S0103-50532008000700011.
M.K. Sahu, N. Dubey, R. Pandey, S.S. Shukla, B. Gidwani. Formulation, Evaluation, and Validation of Microspheres of Cyclophosphamide for Topical Delivery. Pharmacophore 14 (2023) 1-8. https://doi.org/10.51847/e4GvuoN96z.
A. V. Murueva, A.M. Shershneva, K. V. Abanina, S. V. Prudnikova, E.I. Shishatskaya. Development and characterization of ceftriaxone-loaded P3HB-based microparticles for drug delivery. Drying Technology 37 (2019) 1131-1142. https://doi.org/10.1080/07373937.2018.1487451.
E.G. Kiselev, S. V. Baranovskiy. The Kinetics of Fungicide and Herbicide Release from Slow-Release Formulations Prepared from Degradable Poly-3- Hydroxybutyrate. Journal of Siberian Federal University. Biology 9 (2016) 233-240. https://doi.org/10.17516/1997-1389-2016-9-2-233-240.
T.G. Volova, A. V. Demidenko, A. V. Murueva, A.E. Dudaev, I. Nemtsev, E.I. Shishatskaya. Biodegradable Polyhydroxyalkanoates Formed by 3- and 4-Hydroxybutyrate Monomers to Produce Nanomembranes Suitable for Drug Delivery and Cell Culture. Technologies 11 (2023) 106. https://doi.org/10.3390/technologies11040106.
A. V. Murueva, A.M. Shershneva, E.I. Shishatskaya, T.G. Volova. Characteristics of Microparticles Based on Resorbable Polyhydroxyalkanoates Loaded with Antibacterial and Cytostatic Drugs. International Journal of Molecular Sciences 24 (2023) 14983. https://doi.org/10.3390/ijms241914983.
K. Ghosal, A. Das, S.K. Das, S. Mahmood, M.A.M. Ramadan, S. Thomas. Synthesis and characterization of interpenetrating polymeric networks based bio-composite alginate film: A well-designed drug delivery platform. International Journal of Biological Macromolecules 130 (2019) 645-654. https://doi.org/10.1016/j.ijbiomac.2019.02.117.
K.S. Joshy, M.A. Susan, S. Snigdha, K. Nandakumar, A.P. Laly, T. Sabu. Encapsulation of zidovudine in PF-68 coated alginate conjugate nanoparticles for anti-HIV drug delivery. International Journal of Biological Macromolecules 107 (2018) 929-937. https://doi.org/10.1016/j.ijbiomac.2017.09.078.
K.S. Joshy, A. George, J. Jose, N. Kalarikkal, L.A. Pothen, S. Thomas. Novel dendritic structure of alginate hybrid nanoparticles for effective anti-viral drug delivery. International Journal of Biological Macromolecules 103 (2017) 1265-1275. https://doi.org/10.1016/j.ijbiomac.2017.05.094.
N. Durán, M.A. Alvarenga, E.C. Da Silva, P.S. Melo, P.D. Marcato. Microencapsulation of antibiotic rifampicin in poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Archives of Pharmacal Research 31 (2008) 1509-1516. https://doi.org/10.1007/s12272-001-2137-7.
L. Nair, J. Sankar, S.A. Nair, G.V. Kumar. Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA. International Journal of Nanomedicine (2011) 1685-1697. https://doi.org/10.2147/IJN.S20165
留言 (0)