M.S. Marriott. Inhibition of sterol biosynthesis in Candida albicans by imidazole-containing antifungals. Journal of General Microbiology 117 (1980) 253-255. https://doi.org/10.1099/00221287-117-1-253.
D. Allen, D. Wilson, R. Drew, J. Perfect. Expert Review of Anti-infective Therapy infection management Azole antifungals: 35 years of invasive fungal infection management. Expert Review of Anti-infective Therapy 13 (2015) 787-798. http://doi.org/10.1586/14787210.2015.1032939.
G. Larralde, J. Vivas, J.A. Urbina. Concentration and time dependence of the effects of ketoconazole on growth and sterol synthesis by Trypanosoma (Schizotrypanum) cruzi epimastigotes. Acta Cientifica Venezolana 39 (1988) 140-146. https://pubmed.ncbi.nlm.nih.gov/3075103/.
T.K. Daneshmend, D.W. Warnock. Clinical Pharmacokinetics of Ketoconazole. Clinical Pharmacokinetics 14 (1988) 14-34. http://doi.org/10.2165/00003088-198814010-00002.
Ketoconazole HRA 200 mg tablets. Electronic medicines compendium. https://www.medicines.org.uk/emc/product/1767/smpc Accessed November 7, 2024
Drug Development and Drug Interactions Table of Substrates, Inhibitors and Inducers. U.S. Food & Drug. https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers Accessed November 7, 2024
B.H.C. Stricker, A.P.R. Blok, F.B. Bronkhorst, G.E. Van Parys, V.J. Desmet. Ketoconazole-associated hepatic injury. A clinicopathological study of 55 cases. Journal of Hepatology 3 (1986) 399-406. http://doi.org/10.1016/S0168-8278(86)80495-0.
J.H. Lewis, H.J. Zimmerman, G.D. Benson, K.G. Ishak. Hepatic Injury Associated With Ketoconazole Therapy: Analysis of 33 Cases. Gastroenterology 86 (1984) 503-513. http://doi.org/10.1016/S0016-5085(84)80021-9.
P.S. Banankhah, K.A. Garnick, D.J. Greenblatt. Ketoconazole-Associated Liver Injury in Drug-Drug Interaction Studies in Healthy Volunteers. Journal of Clinical Pharmacology 56 (2016) 1196-1202. http://doi.org/10.1002/jcph.711.
H.K. Greenblatt, D.J. Greenblatt. Liver injury associated with ketoconazole: review of the published evidence. Journal of Clinical Pharmacology 54 (2014) 1321-1329. http://doi.org/10.1002/jcph.400.
R.J. Rodriguez, D.J. Acosta. N-deacetyl ketoconazole-induced hepatotoxicity in a primary culture system of rat hepatocytes. Toxicology 117 (1997) 123-131. http://doi.org/10.1016/s0300-483x(96)03560-3.
P. Haegler, L. Joerin, S. Krähenbühl, J. Bouitbir. Hepatocellular Toxicity of Imidazole and Triazole Antimycotic Agents. Toxicological Sciences 157 (2017) 183-195. http://doi.org/10.1093/toxsci/kfx029.
R.J. Rodriguez, C.L. Miranda. Isoform specificity of N-deacetyl ketoconazole by human and rabbit flavin-containing monooxygenases. Drug Metabolism and Disposition 28(9) (2000) 1083-1086. https://dmd.aspetjournals.org/content/28/9/1083
J. Weiss, K.I. Foerster, M. Weber, J. Burhenne, G. Mikus, T. Lehr, W.E. Haefeli. Does the circulating ketoconazole metabolite N-deacetyl ketoconazole contribute to the drug-drug interaction potential of the parent compound? European Journal of Pharmaceutical Sciences 169 (2022) 106076. http://doi.org/10.1016/j.ejps.2021.106076.
D.J. Greenblatt. The ketoconazole legacy. Clinical Pharmacology in Drug Development 3 (2014) 1-3. http://doi.org/10.1002/cpdd.100.
Nizoral (Ketoconazole): drug safety communication- potentially fatal liver injury, risk of drug interactions, and adrenal gland problems. Clinical Infectious Diseases 57 (2013) i-ii. https://doi.org/10.1093/cid/cit548
G. Lake-Bakaar, P.J. Scheuer, D.S. Sherlock. Hepatic reactions associated with ketoconazole in the United Kingdom. British Medical Journal (Clinical Research Ed.) 294 (1987) 419-422. http://doi.org/10.1136/bmj.294.6569.419.
N. Outeiro, N. Hohmann, G. Mikus. No Increased Risk of Ketoconazole Toxicity in Drug-Drug Interaction Studies. Journal of Clinical Pharmacology 56 (2016) 1203-1211. https://doi.org/10.1002/jcph.795.
R.J. Hay. Ketoconazole: A reappraisal. British Medical Journal (Clinical Research Ed.) 290 (1985) 260-261. http://doi.org/10.1136/bmj.290.6464.260.
A. Urtti. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Advanced Drug Delivery Reviews 58 (2006) 1131-1135. http://doi.org/10.1016/j.addr.2006.07.027.
V. Agrahari, A. Mandal, V. Agrahari, H.M. Trinh, M. Joseph, A. Ray, H. Hadji, R. Mitra, D. Pal, A.K. Mitra. A comprehensive insight on ocular pharmacokinetics. Drug Delivery and Translational Research 6 (2016) 735–754. http://doi.org/10.1007/s13346-016-0339-2.
C. Durairaj. Ocular pharmacokinetics. Handbook of Experimental Pharmacology 242 (2017) 31-35. http://doi.org/10.1007/164_2016_32.
Deepta Ghate, Henry F Edelhauser. Ocular drug delivery. Expert Opinion on Drug Delivery 3 (2006) 275-287. https://doi.org/10.1517/17425247.3.2.275.
S. Horita, M. Watanabe, M. Katagiri, H. Nakamura, H. Haniuda, T. Nakazato, Y. Kagawa. Species differences in ocular pharmacokinetics and pharmacological activities of regorafenib and pazopanib eye-drops among rats, rabbits and monkeys. Pharmacology Research and Perspectives 7 (2019) 487-527. http://doi.org/10.1002/prp2.545.
A. Fayyaz, V.P. Ranta, E. Toropainen, K.S. Vellonen, G.D.A. Ricci, M. Reinisalo, E.M. Heikkinen, I. Gardner, A. Urtti, M. Jamei, E.M. Del Amo. Ocular Intracameral Pharmacokinetics for a Cocktail of Timolol, Betaxolol, and Atenolol in Rabbits. Molecular Pharmaceutics 17 (2020) 588-594. http://doi.org/10.1021/acs.molpharmaceut.9b01024.
A. Fayyaz, K.S. Vellonen, V.P. Ranta, E. Toropainen, M. Reinisalo, A. Valtari, J. Puranen, G.D.A. Ricci, E.M. Heikkinen, I. Gardner, M. Ruponen, A. Urtti, M. Jamei, E.M. del Amo. Ocular pharmacokinetics of atenolol, timolol and betaxolol cocktail: Tissue exposures in the rabbit eye. European Journal of Pharmaceutics and Biopharmaceutics 166 (2021) 155-162. http://doi.org/10.1016/j.ejpb.2021.06.003.
E.M. del Amo, A. Hammid, M. Tausch, E. Toropainen, A. Sadeghi, A. Valtari, J. Puranen, M. Reinisalo, M. Ruponen, A. Urtti, A. Sauer, P. Honkakoski. Ocular metabolism and distribution of drugs in the rabbit eye: Quantitative assessment after intracameral and intravitreal administrations. International Journal of Pharmaceutics 613 (2022) 121361. http://doi.org/10.1016/j.ijpharm.2021.121361.
J. Zhang, L. Wang, C. Gao, L. Zhang, H. Xia. Ocular pharmacokinetics of topically-applied ketoconazole solution containing hydroxypropyl beta-cyclodextrin to rabbits. Journal of Ocular Pharmacology and Therapeutics 24 (2008) 501-506. http://doi.org/10.1089/jop.2008.0015.
J.L. Dumouchel, N. Chemuturi, M.N. Milton, G. Camenisch, J. Chastain, M. Walles, V. Sasseville, M. Gunduz, G.R. Iyer, U.A. Argikar. Models and approaches describing the metabolism, transport, and toxicity of drugs administered by the ocular route. Drug Metabolism and Disposition 46 (2018) 1670-1683. http://doi.org/10.1124/dmd.118.082974.
R.J. Rodriguez, D.J. Acosta. Metabolism of ketoconazole and deacetylated ketoconazole by rat hepatic microsomes and flavin-containing monooxygenases. Drug Metabolism and Disposition 25 (1997) 772-777. https://pubmed.ncbi.nlm.nih.gov/9193882/.
D.A. Hamdy, D.R. Brocks. Nonlinear stereoselective pharmacokinetics of ketoconazole in rat after administration of racemate. Chirality 21 (2009) 704-712. http://doi.org/10.1002/chir.20669.
R.P. Remmel, K. Amoh, M.M. Abdel-Monem. The disposition and pharmacokinetics of ketoconazole in the rat. Drug Metabolism and Disposition 15 (1987) 735-739. https://pubmed.ncbi.nlm.nih.gov/2893696/.
D.A. Hamdy, D.R. Brocks. The effect of increased lipoprotein levels on the pharmacokinetics of ketoconazole enantiomers in the rat. Xenobiotica 41 (2011) 137-143. http://doi.org/10.3109/00498254.2010.529178.
L.L. Von Moltke, D.J. Greenblatt, M.M. Cotreau-Bibbo, Su Xiang Duan, J.S. Harmatz, R.I. Shader. Inhibition of desipramine hydroxylation in vitro by serotonin-reuptake- inhibitor antide¬pressants, and by quinidine and ketoconazole: A model system to predict drug interactions in vivo. Journal of Pharmacology and Experimental Therapeutics 268 (1994) 1278-1283. https://pubmed.ncbi.nlm.nih.gov/8138941/.
L. von Moltke, D. Greenblatt, M. Cotreau‐Bibbo, J. Harmatz, R. Shader. Inhibitors of alprazolam metabolism in vitro: effect of serotonin‐ reuptake‐inhibitor antidepressants, ketoconazole and quinidine. British Journal of Clinical Pharmacology 38 (1994) 23-31. http://doi.org/10.1111/j.1365-2125.1994.tb04317.x.
M.D. Linas, F. Malecaze, M.H. Bessieres, M.N. Jaureguy, A. Mathis, P. Bec, J.P. Seguela, d’A A. Monbrun. Etude expérimentale de la diffusion intra-oculaire du Kétoconazole chez le lapin. Medecine et Maladies Infectieuses 15 (1985) 389-390. http://doi.org/10.1016/S0399-077X(85)80039-1.
D.B. Haughey, W.J. Jusko. Effect of ketoconazole on methylprednisolone pharmacokinetics and receptor/gene-mediated pharmacodynamics. Journal of Pharmacology and Experimental Therapeutics 259 (1991) 826-832. https://pubmed.ncbi.nlm.nih.gov/1941630/.
H.L. Bomont, M.H. Tarbit, M.J. Humphrey, J.B. Houston. Disposition of Azole Antifungal Agents. II. Hepatic Binding and Clearance of Dichlorophenyl-Bis-triazolylpropanol (DTP) in the Rat. Pharmaceutical Research: An Official Journal of the American Association of Pharmaceutical Scientists 11 (1994) 951-960. http://doi.org/10.1023/A:1018966800208.
A.S. Kalgutkar, B.C. Crews, S.W. Rowlinson, A.B. Marnett, K.R. Kozak, R.P. Remmel, L.J. Marnett. Biochemically based design of cyclooxygenase-2 (COX-2) inhibitors: Facile conversion of nonsteroidal antiinflammatory drugs to potent and highly selective COX-2 inhibitors. Proceedings of the National Academy of Sciences of the United States of America 97 (2000) 925-930. http://doi.org/10.1073/pnas.97.2.925.
R.W. Klecker, C.A. Jamis-Dow, M.J. Egorin, K. Erkmen, R.J. Parker, R. Stevens, J.M. Collins. Effect of cimetidine, probenecid, and ketoconazole on the distribution, biliary secretion, and metabolism of [3H]taxol in the Sprague-Dawley rat. Drug Metabolism and Disposition 22 (1994) 254-258. https://pubmed.ncbi.nlm.nih.gov/7912177/.
K. Igarashi, F. Kasuya, M. Fukui, E. Usuki, N. Castagnoli. Studies on the metabolism of haloperidol (HP): The role of CYP3A in the production of the neurotoxic pyridinium metabolite HPP+ found in rat brain following ip administration of HP. Life Sciences 57 (1995) 2439-2446. http://doi.org/10.1016/0024-3205(95)02240-5.
K. Yamano, K. Yamamoto, H. Kotaki, Y. Sawada, T. Iga. Quantitative prediction of metabolic inhibition of midazolam by itraconazole and ketoconazole in rats: Implication of concentrative uptake of inhibitors into liver. Drug Metabolism and Disposition 27 (1999) 395-402. https://pubmed.ncbi.nlm.nih.gov/10064572/.
R.B. Ewesuedo, M.E. Dolan. Pharmacokinetics of oral O6-benzylguanine and evidence of interaction with oral ketoconazole in the rat. Cancer Chemotherapy and Pharmacology 46 (2000) 150-155. http://doi.org/10.1007/s002800000121.
K. He, T.F. Woolf, E.K. Kindt, A.E. Fielder, R.E. Talaat. Troglitazone quinone formation catalyzed by human and rat CYP3A: An atypical CYP oxidation reaction. Biochemical Pharmacology 62 (2001) 191-198. http://doi.org/10.1016/S0006-2952(01)00653-0.
T. Kotegawa, B.E. Laurijssens, L.L. Von Moltke, M.M. Cotreau, M.D. Perloff, K. Venkatakrishnan, J.S. Warrington, B.W. Granda, J.S. Harmatz, D.J. Greenblatt. In vitro, pharmacokinetic, and pharmacodynamic interactions of ketoconazole and midazolam in the rat. Journal of Pharmacology and Experimental Therapeutics 302 (2002) 1228-1237. http://doi.org/10.1124/jpet.102.035972.
A. Walubo, S. Barr, A.M. Abraham, C. Coetsee. The role of cytochrome-P450 inhibitors in the prevention of hepatotoxicity after paracetamol overdose in rats. Human and Experimental Toxicology 23 (2004) 49-54. http://doi.org/10.1191/0960327104ht415oa.
Y.J. Li, H.M. Shaw. Pregnenolone and dexamethasone, modulators of cytochrome P450-3A, not increase but reduce urinary α-CEHC excretion in rats. BioFactors 31 (2007) 67-76. http://doi.org/10.1002/biof.5520310107.
X.H. Ren, L.Q. Si, L. Cao, J. Yao, J. Qiu, G. Li. Effect of polyoxyl ether analogous surfactants on the activity of cytochromes P450 3A in rats in vivo. Yaoxue Xuebao 43 (2008) 528-534. https://pubmed.ncbi.nlm.nih.gov/18717343/.
V.B. Boralli, E.B. Coelho, V.L. Lanchote. Influence of quinidine, cimetidine, and ketoconazole on the enantioselective pharmacokinetics and metabolism of metoprolol in rats. Chirality 21 (2009) 886-893. http://doi.org/10.1002/chir.20682.
X.F. Zhang, J. Liu, F. Ye, S.G. Ji, N. Zhang, R. Sen Cao, L. He, J.C. Wu, X.F. Li. Effects of triptolide on the pharmacokinetics of cyclophosphamide in rats: A possible role of CytochromeP3A4 inhibition. Chinese Journal of Integrative Medicine 20 (2014) 534-539. http://doi.org/10.1007/s11655-014-1710-0.
L. Wang, S. Wang, M. Chen, X. Chen, Y. Lin, X. Hu, X. Huang, X. Li, G. Hu. Inhibitory effect of ketoconazole and voriconazole on the pharmacokinetics of carvedilol in rats. Drug Development and Industrial Pharmacy 41 (2015) 1661-1666. http://doi.org/10.3109/03639045.2014.983930.
A. Iida, E. Sasaki, A. Yano, K. Tsuneyama, T. Fukami, M. Nakajima, T. Yokoi. Carbamazepine-induced liver injury requires CYP3A-mediated metabolism and glutathione depletion in rats. Drug Metabolism and Disposition 43 (2015) 958-968. http://doi.org/10.1124/dmd.115.063370.
X. Chen, E. Gu, S. Wang, X. Zheng, M. Chen, L. Wang, G. Hu, J.P. Cai, H. Zhou. Evaluation of the effects of ketoconazole and voriconazole on the pharmacokinetics of oxcarbazepine and its main metabolite MHD in rats by UPLC-MS-MS. Journal of Chromatographic Science 54 (2016) 334-342. http://doi.org/10.1093/chromsci/bmv146.
K. Ren, R. Wang, S. Fang, S. Ren, H. Hua, D. Wang, Y. Pan, X. Liu. Effect of CYP3A inducer/inhibitor and licorice on hepatotoxicity and in vivo metabolism of main alkaloids of Euodiae Fructus based on UPLC-Q-Exactive-MS. Journal of Ethnopharmacology 303 (2023) 116005 . http://doi.org/10.1016/j.jep.2022.116005.
A.L. Cirello, J.L. Dumouchel, M. Gunduz, C.E. Dunne, U.A. Argikar. In vitro ocular metabolism and bioactivation of ketoconazole in rat, rabbit and human. Drug Metabolism and Pharmacokinetics 32 (2017) 121-126. http://doi.org/10.1016/j.dmpk.2016.11.001.
W. Fitch, T. Tran, M. Young, L. Liu, Y. Chen. Revisiting the Metabolism of Ketoconazole Using Accurate Mass. Drug Metabolism Letters 3 (2009) 191-198. https://doi.org/10.2174/187231209789352085.
L. Shen, J. Wang, Y. Yi, C. Ye, R. Wang, G. Xia, C. Yu, F. Tu, J. Xu, Z. Zheng. Inhibitory effect of isavuconazole, ketoconazole, and voriconazole on the pharmacokinetics of methadone in vivo and in vitro. Drug Testing and Analysis 11 (2019) 595-600. http://doi.org/10.1002/dta.2534.
J.H. Kim, W.G. Choi, S. Lee, H.S. Lee. Revisiting the metabolism and bioactivation of ketoconazole in human and mouse using liquid chromatography-mass spectrometry-based metabolomics. International Journal of Molecular Sciences 18 (2017) 621. http://doi.org/10.3390/ijms18030621.
留言 (0)