Dissociable control of motivation and reinforcement by distinct ventral striatal dopamine receptors

Wise, R. A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).

Article  CAS  PubMed  Google Scholar 

Volkow, N. D., Wise, R. A. & Baler, R. The dopamine motive system: implications for drug and food addiction. Nat. Rev. Neurosci. 18, 741–752 (2017).

Article  CAS  PubMed  Google Scholar 

Russo, S. J. & Nestler, E. J. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 14, 609–625 (2013).

Article  CAS  PubMed  Google Scholar 

Castro, D. C. & Bruchas, M. R. A motivational and neuropeptidergic hub: anatomical and functional diversity within the nucleus accumbens shell. Neuron 102, 529–552 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berke, J. D. What does dopamine mean? Nat. Neurosci. 21, 787–793 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mohebi, A., Wei, W., Pelattini, L., Kim, K. & Berke, J. D. Dopamine transients follow a striatal gradient of reward time horizons. Nat. Neurosci. 27, 737–746 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jong, J. W. D., Fraser, K. M. & Lammel, S. Mesoaccumbal dopamine heterogeneity: what do dopamine firing and release have to do with it? Annu. Rev. Neurosci. 45, 109–129 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Liu, C., Goel, P. & Kaeser, P. S. Spatial and temporal scales of dopamine transmission. Nat. Rev. Neurosci. 22, 345–358 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Gerfen, C. R. & Surmeier, D. J. Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci. 34, 441–466 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, S. J. et al. Cell-type-specific asynchronous modulation of PKA by dopamine in learning. Nature 590, 451–456 (2021).

Article  CAS  PubMed  Google Scholar 

Shen, W., Flajolet, M., Greengard, P. & Surmeier, D. J. Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321, 848–851 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iino, Y. et al. Dopamine D2 receptors in discrimination learning and spine enlargement. Nature 579, 555–560 (2020).

Article  CAS  PubMed  Google Scholar 

Schwartz, J. C. et al. The dopamine D3 receptor in nucleus accumbens: selective cellular localisation, function and regulation. Eur. Neuropsychopharmacol. 4, 190–191 (1994).

Article  CAS  Google Scholar 

Sokoloff, P., Giros, B., Martres, M.-P., Bouthenet, M. -L. & Schwartz, J.-C. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347, 146–151 (1990).

Article  CAS  PubMed  Google Scholar 

Beaulieu, J.-M. & Gainetdinov, R. R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 63, 182–217 (2011).

Article  CAS  PubMed  Google Scholar 

Manvich, D. F. et al. Selective D2 and D3 receptor antagonists oppositely modulate cocaine responses in mice via distinct postsynaptic mechanisms in nucleus accumbens. Neuropsychopharmacology 44, 1445–1455 (2018).

Article  Google Scholar 

Song, R. et al. Increased vulnerability to cocaine in mice lacking dopamine D3 receptors. Proc. Natl Acad. Sci. USA 109, 17675–17680 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simpson, E. H. et al. Selective overexpression of dopamine D3 receptors in the striatum disrupts motivation but not cognition. Biol. Psychiatry 76, 823–831 (2014).

Article  CAS  PubMed  Google Scholar 

Shin, S. et al. Drd3 signaling in the lateral septum mediates early life stress-induced social dysfunction. Neuron 97, 195–208 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pribiag, H. et al. Ventral pallidum DRD3 potentiates a pallido-habenular circuit driving accumbal dopamine release and cocaine seeking. Neuron 109, 2165–2182 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ridray, S. et al. Coexpression of dopamine D1 and D3 receptors in islands of Calleja and shell of nucleus accumbens of the rat: opposite and synergistic functional interactions. Eur. J. Neurosci. 10, 1676–1686 (1998).

Article  CAS  PubMed  Google Scholar 

Meijer, J. H. & Robbers, Y. Wheel running in the wild. Proc. Biol. Sci. 281, 20140210 (2014).

PubMed  PubMed Central  Google Scholar 

Greenwood, B. N. et al. Long-term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway. Behav. Brain Res. 217, 354–362 (2011).

Article  PubMed  Google Scholar 

Greenwood, B. N. & Fleshner, M. Voluntary wheel running: a useful rodent model for investigating the mechanisms of stress robustness and neural circuits of exercise motivation. Curr. Opin. Behav. Sci. 28, 78–84 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Garland, T. Jr et al. The biological control of voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to obesity: human and rodent perspectives. J. Exp. Biol. 214, 206–229 (2011).

Article  PubMed  Google Scholar 

Basso, J. C. & Morrell, J. I. The medial prefrontal cortex and nucleus accumbens mediate the motivation for voluntary wheel running in the rat. Behav. Neurosci. 129, 457–472 (2015).

Article  PubMed  Google Scholar 

Salamone, J. D. et al. Haloperidol and nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food consumption in a novel food choice procedure. Psychopharmacology 104, 515–521 (1991).

Article  CAS  PubMed  Google Scholar 

Baldo, B. A. & Kelley, A. E. Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding. Psychopharmacology 191, 439–459 (2007).

Article  CAS  PubMed  Google Scholar 

Kupchik, Y. M. et al. Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nat. Neurosci. 18, 1230–1232 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tejeda, H. A. et al. Pathway- and cell-specific kappa-opioid receptor modulation of excitation-inhibition balance differentially gates D1 and D2 accumbens neuron activity. Neuron 93, 147–163 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baimel, C., McGarry, L. M. & Carter, A. G. The projection targets of medium spiny neurons govern cocaine-evoked synaptic plasticity in the nucleus accumbens. Cell Rep. 28, 2256–2263 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif