Effect of Triterpenoids Betulin and Betulinic Acid on Pulmonary Surfactant Membranes

Alakurtti S, Mäkelä T, Koskimies S, Yli-Kauhaluoma J (2006) Pharmacological properties of the ubiquitous natural product betulin. Eur J Pharm Sci 29:1–13. https://doi.org/10.1016/j.ejps.2006.04.006

Article  CAS  PubMed  Google Scholar 

Ali S, Minchey S, Janoff A, Mayhew E (2000) A differential scanning calorimetry study of phosphocholines mixed with paclitaxel and its bromoacylated taxanes. Biophys J 78:246–256. https://doi.org/10.1016/S0006-3495(00)76588-X

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altunayar-Unsalan C (2024a) Calorimetric and raman spectroscopic studies of zwitterionic and anionic membrane interactions of phenolic compound coumarin. Vib Spectrosc 133:103712. https://doi.org/10.1016/j.vibspec.2024.103712

Article  CAS  Google Scholar 

Altunayar-Unsalan C (2024b) DSC and FTIR study on the interaction between pentacyclic triterpenoid lupeol and DPPC membrane. J Bioenerg Biomembr 56:553–561. https://doi.org/10.1007/s10863-024-10030-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altunayar-Unsalan C, Unsalan O, Mavromoustakos T (2022a) Insights into molecular mechanism of action of citrus flavonoids hesperidin and naringin on lipid bilayers using spectroscopic, calorimetric, microscopic and theoretical studies. J Mol Liq 347:118411. https://doi.org/10.1016/j.molliq.2021.118411

Article  CAS  Google Scholar 

Altunayar-Unsalan C, Unsalan O, Mavromoustakos T (2022b) Molecular interactions of hesperidin with DMPC/cholesterol bilayers. Chem Biol Interact 366:110131. https://doi.org/10.1016/j.cbi.2022.110131

Article  CAS  PubMed  Google Scholar 

Amiri S, Dastghaib S, Ahmadi M et al (2020) Betulin and its derivatives as novel compounds with different pharmacological effects. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2019.06.008

Article  PubMed  Google Scholar 

Arias JM, Cobos Picot RA, Tuttolomondo ME et al (2020) Interaction ofN-acetylcysteine with DPPC liposomes at different pH: a physicochemical study. New J Chem 44:14837–14848. https://doi.org/10.1039/c9nj06167c

Article  CAS  Google Scholar 

Bangham AD (1978) Properties and uses of lipid vesicles: an overview. Ann N Y Acad Sci 308:2–7. https://doi.org/10.1111/j.1749-6632.1978.tb22010.x

Article  CAS  PubMed  Google Scholar 

Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252. https://doi.org/10.1016/S0022-2836(65)80093-6

Article  CAS  PubMed  Google Scholar 

Belosludtsev KN, Ilzorkina AI, Belosludtseva NV et al (2022) Comparative study of cytotoxic and membranotropic properties of betulinic Acid-F16 conjugate on breast adenocarcinoma cells (MCF-7) and primary human fibroblasts. Biomedicines 10:1–14. https://doi.org/10.3390/biomedicines10112903

Article  CAS  Google Scholar 

Chemcraft - graphical software for visualization of quantum chemistry computations (2015) Version 1.8 Build 682 Chemcraft - graphical software for visualization of quantum chemistry computations. Version 1.8, build 682

Chen Y, Sun R, Wang B (2011) Monolayer behavior of binary systems of betulinic acid and cardiolipin: thermodynamic analyses of Langmuir monolayers and AFM study of langmuir-blodgett monolayers. J Colloid Interface Sci 353:294–300. https://doi.org/10.1016/j.jcis.2010.09.019

Article  CAS  PubMed  Google Scholar 

Cunha AB, Batista R, Castro MÁ, David JM (2021) Chemical strategies towards the synthesis of betulinic acid and its more potent antiprotozoal analogues. Molecules 26:1–16. https://doi.org/10.3390/molecules26041081

Article  CAS  Google Scholar 

Dubinin MV, Semenova AA, Ilzorkina AI et al (2020) Effect of betulin and betulonic acid on isolated rat liver mitochondria and liposomes. Biochim Biophys Acta Biomembr 1862:183383. https://doi.org/10.1016/j.bbamem.2020.183383

Article  CAS  PubMed  Google Scholar 

Dubinin MV, Semenova AA, Ilzorkina AI et al (2021) New quaternized pyridinium derivatives of betulin: synthesis and evaluation of membranotropic properties on liposomes, pro- and eukaryotic cells, and isolated mitochondria. Chem Biol Interact 349:109678. https://doi.org/10.1016/j.cbi.2021.109678

Article  CAS  PubMed  Google Scholar 

Frisch MJ, Trucks GW, Schlegel HB, et al (2013) Gaussian 09, Revision E.01

Gilli G, Gilli P (2009) The nature of the hydrogen bond. Outline of a comprehensive hydrogen bond theory IUCr Monog. Oxford University Press, Oxford

Chapter  Google Scholar 

Holopainen JM, Lemmich J, Richter F et al (2000) Dimyristoylphosphatidylcholine/C16:0-ceramide binary liposomes studied by differential scanning calorimetry and wide- and small-angle X-ray scattering. Biophys J 78:2459–2469. https://doi.org/10.1016/S0006-3495(00)76790-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hordyjewska A, Ostapiuk A, Horecka A, Kurzepa J (2019) Betulin and betulinic acid: triterpenoids derivatives with a powerful biological potential. Phytochem Rev 18:929–951. https://doi.org/10.1007/s11101-019-09623-1

Article  CAS  Google Scholar 

Kamran S, Sinniah A, Abdulghani MAM, Alshawsh MA (2022) Therapeutic potential of certain terpenoids as anticancer agents: a scoping review. Cancers (Basel). https://doi.org/10.3390/cancers14051100

Article  PubMed  Google Scholar 

Kaviratna AS, Banerjee R (2009) The effect of acids on dipalmitoyl phosphatidylcholine (DPPC) monolayers and liposomes. Colloids Surfaces A Physicochem Eng Asp 345:155–162. https://doi.org/10.1016/j.colsurfa.2009.04.051

Article  CAS  Google Scholar 

Klajnert B, Epand RM (2005) PAMAM dendrimers and model membranes: Differential scanning calorimetry studies. Int J Pharm 305:154–166. https://doi.org/10.1016/j.ijpharm.2005.08.015

Article  CAS  PubMed  Google Scholar 

Konstantinidi A, Naziris N, Chountoulesi M et al (2018) Comparative perturbation effects exerted by the influenza A M2 WT protein inhibitors amantadine and the spiro[pyrrolidine-2,2′-adamantane] variant AK13 to membrane bilayers studied using biophysical experiments and molecular dynamics simulations. J Phys Chem B 122:9877–9895. https://doi.org/10.1021/acs.jpcb.8b07071

Article  CAS  PubMed  Google Scholar 

Kuete V, Omosa LK, Midiwo JO et al (2019) Cytotoxicity of naturally occurring phenolics and terpenoids from Kenyan flora towards human carcinoma cells. J Ayurveda Integr Med 10:178–184. https://doi.org/10.1016/j.jaim.2018.04.001

Article  PubMed  Google Scholar 

Kuroki Y, Akino T (1991) Pulmonary surfactant protein A (SP-A) specifically binds dipalmitoylphosphatidylcholine. J Biol Chem 266:3068–3073. https://doi.org/10.1016/s0021-9258(18)49955-3

Article  CAS  PubMed  Google Scholar 

Lesieur S, Charon D, Lesieur P et al (2000) Phase behavior of fully hydrated DMPC-amphiphilic cyclodextrin systems. Chem Phys Lipids 106:127–144. https://doi.org/10.1016/S0009-3084(00)00149-3

Article  CAS  PubMed  Google Scholar 

Li D, Du Z, Li C et al (2015) Potent inhibitory effect of terpenoids from Acanthopanax trifoliatus on growth of PC-3 prostate cancer cells in vitro and in vivo is associated with suppression of NF-κB and STAT3 signalling. J Funct Foods 15:274–283. https://doi.org/10.1016/j.jff.2015.03.035

Article  CAS  Google Scholar 

Liu S, Xu F, Liu L, Ma D (2015) A convenient synthesis of lupeol from Betulin. Ind Crops Prod 74:494–496. https://doi.org/10.1016/j.indcrop.2015.05.071

Article  CAS  Google Scholar 

Lukáč M, Horváth B, Pisárčik M et al (2018) Improved isolation of betulin and lupeol from birch bark and oxidation of their acetylated derivatives with chromyl chloride. Monatshefte fur Chemie 149:947–952. https://doi.org/10.1007/s00706-018-2165-3

Article  CAS  Google Scholar 

Mady MM, Elshemey WM (2011) Interaction of dipalmitoyl phosphatidylcholine (DPPC) liposomes and insulin. Mol Phys 109:1593–1598. https://doi.org/10.1080/00268976.2011.575408

Article  CAS  Google Scholar 

Mavromoustakos TM (2007) The use of differential scanning calorimetry to study drug-membrane interactions. Methods Mol Biol 400:587–600. https://doi.org/10.1385/1-59745-519-9:587

留言 (0)

沒有登入
gif