Alaggio R, Amador C, Anagnostopoulos I, Attygalle AD, Araujo IBO, Berti E, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia. 2022;36(7):1720–48. https://doi.org/10.1038/s41375-022-01620-2.
Article PubMed PubMed Central Google Scholar
Savage KJ, Harris NL, Vose JM, Ullrich F, Jaffe ES, Connors JM, et al. ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood. 2008;111(12):5496–504. https://doi.org/10.1182/blood-2008-01-134270.
Article CAS PubMed Google Scholar
Nizamuddin I, Galvez C, Pro B. Management of ALCL and other CD30+ peripheral T-cell lymphomas with a focus on Brentuximab vedotin. Semin Hematol. 2021;58(2):85–94. https://doi.org/10.1053/j.seminhematol.2021.02.006.
Horwitz S, O’Connor OA, Pro B, Trumper L, Iyer S, Advani R, et al. The ECHELON-2 Trial: 5-year results of a randomized, phase III study of brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma. Ann Oncol. 2022;33(3):288–98. https://doi.org/10.1016/j.annonc.2021.12.002.
Article CAS PubMed Google Scholar
Bachy E, Camus V, Thieblemont C, Sibon D, Casasnovas RO, Ysebaert L, et al. Romidepsin plus CHOP versus CHOP in patients with previously untreated peripheral T-cell lymphoma: results of the Ro-CHOP phase III study (conducted by LYSA). J Clin Oncol. 2022;40(3):242–51. https://doi.org/10.1200/JCO.21.01815.
Article CAS PubMed Google Scholar
Bellei M, Federico M. The outcome of peripheral T-cell lymphoma patients failing first-line therapy: a report from the prospective international T-cell project. Haematologica. 2019;104(4): e178. https://doi.org/10.3324/haematol.2019.218305.
Article PubMed PubMed Central Google Scholar
Evans PC, Smith TS, Lai MJ, Williams MG, Burke DF, Heyninck K, et al. A novel type of deubiquitinating enzyme. J Biol Chem. 2003;278(25):23180–6. https://doi.org/10.1074/jbc.M301863200.
Article CAS PubMed Google Scholar
Chen S, Cai K, Zheng D, Liu Y, Li L, He Z, et al. RHBDL2 promotes the proliferation, migration, and invasion of pancreatic cancer by stabilizing the N1ICD via the OTUD7B and activating the Notch signaling pathway. Cell Death Dis. 2022;13(11):945. https://doi.org/10.1038/s41419-022-05379-3.
Article CAS PubMed PubMed Central Google Scholar
Tang J, Wu Z, Tian Z, Chen W, Wu G. OTUD7B stabilizes estrogen receptor alpha and promotes breast cancer cell proliferation. Cell Death Dis. 2021;12(6):534. https://doi.org/10.1038/s41419-021-03785-7.
Article CAS PubMed PubMed Central Google Scholar
Wang B, Jie Z, Joo D, Ordureau A, Liu P, Gan W, et al. TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature. 2017;545(7654):365–9. https://doi.org/10.1038/nature22344.
Article CAS PubMed PubMed Central Google Scholar
Wang JH, Zhong XP, Zhang YF, Wu XL, Li SH, Jian PE, et al. Cezanne predicts progression and adjuvant TACE response in hepatocellular carcinoma. Cell Death Dis. 2017;8(9): e3043. https://doi.org/10.1038/cddis.2017.428.
Article PubMed PubMed Central Google Scholar
Hu H, Brittain GC, Chang JH, Puebla-Osorio N, Jin J, Zal A, et al. OTUD7B controls non-canonical NF-kappaB activation through deubiquitination of TRAF3. Nature. 2013;494(7437):371–4. https://doi.org/10.1038/nature11831.
Article CAS PubMed PubMed Central Google Scholar
Qiu S, Liu Y, Gui A, Xia Z, Liu W, Gu JJ, et al. Deubiquitinase OTUD7B is a potential prognostic biomarker in diffuse large B-cell lymphoma. J Cancer. 2022;13(3):998–1004. https://doi.org/10.7150/jca.65835.
Article CAS PubMed PubMed Central Google Scholar
Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90. https://doi.org/10.1182/blood-2016-01-643569.
Article CAS PubMed PubMed Central Google Scholar
Pareja F, Ferraro DA, Rubin C, Cohen-Dvashi H, Zhang F, Aulmann S, et al. Deubiquitination of EGFR by Cezanne-1 contributes to cancer progression. Oncogene. 2012;31(43):4599–608. https://doi.org/10.1038/onc.2011.587.
Article CAS PubMed Google Scholar
Lin DD, Shen Y, Qiao S, Liu WW, Zheng L, Wang YN, et al. Upregulation of OTUD7B (Cezanne) promotes tumor progression via AKT/VEGF pathway in lung squamous carcinoma and adenocarcinoma. Front Oncol. 2019;9:862. https://doi.org/10.3389/fonc.2019.00862.
Article PubMed PubMed Central Google Scholar
Zhang B, Yang C, Wang R, Wu J, Zhang Y, Liu D, et al. OTUD7B suppresses Smac mimetic-induced lung cancer cell invasion and migration via deubiquitinating TRAF3. J Exp Clin Cancer Res. 2020;39(1):244. https://doi.org/10.1186/s13046-020-01751-3.
Article CAS PubMed PubMed Central Google Scholar
Zhang B, Wang H, Yang L, Zhang Y, Wang P, Huang G, et al. OTUD7B and NIK expression in non-small cell lung cancer: association with clinicopathological features and prognostic implications. Pathol Res Pract. 2016;212(10):893–8. https://doi.org/10.1016/j.prp.2016.07.011.
Article CAS PubMed Google Scholar
Wang JH, Wei W, Guo ZX, Shi M, Guo RP. Decreased Cezanne expression is associated with the progression and poor prognosis in hepatocellular carcinoma. J Transl Med. 2015;13:41. https://doi.org/10.1186/s12967-015-0396-1.
Article CAS PubMed PubMed Central Google Scholar
Hu H, Wang H, Xiao Y, Jin J, Chang JH, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213(3):399–414. https://doi.org/10.1084/jem.20151426.
Article CAS PubMed PubMed Central Google Scholar
Moon CS, Reglero C, Cortes JR, Quinn SA, Alvarez S, Zhao J, et al. FYN-TRAF3IP2 induces NF-kappaB signaling-driven peripheral T cell lymphoma. Nat Cancer. 2021;2(1):98–113. https://doi.org/10.1038/s43018-020-00161-w.
Article CAS PubMed PubMed Central Google Scholar
Debackere K, Marcelis L, Demeyer S, Vanden Bempt M, Mentens N, Gielen O, et al. Fusion transcripts FYN-TRAF3IP2 and KHDRBS1-LCK hijack T cell receptor signaling in peripheral T-cell lymphoma, not otherwise specified. Nat Commun. 2021;12(1):3705. https://doi.org/10.1038/s41467-021-24037-4.
Article CAS PubMed PubMed Central Google Scholar
Odqvist L, Sanchez-Beato M, Montes-Moreno S, Martin-Sanchez E, Pajares R, Sanchez-Verde L, et al. NIK controls classical and alternative NF-kappaB activation and is necessary for the survival of human T-cell lymphoma cells. Clin Cancer Res. 2013;19(9):2319–30. https://doi.org/10.1158/1078-0432.CCR-12-3151.
Article CAS PubMed Google Scholar
Lemonnier F, Dupuis J, Sujobert P, Tournillhac O, Cheminant M, Sarkozy C, et al. Treatment with 5-azacytidine induces a sustained response in patients with angioimmunoblastic T-cell lymphoma. Blood. 2018;132(21):2305–9. https://doi.org/10.1182/blood-2018-04-840538.
Article CAS PubMed Google Scholar
Yoon SE, Cho J, Kim YJ, Kim SJ, Kim WS. Real-world efficacy of 5-azacytidine as salvage chemotherapy for angioimmunoblastic T-cell lymphoma. Clin Lymphoma Myeloma Leuk. 2022;22(11):e972–80. https://doi.org/10.1016/j.clml.2022.07.009.
Article CAS PubMed Google Scholar
Ruan J, Moskowitz A, Mehta-Shah N, Sokol L, Chen Z, Kotlov N, et al. Multicenter phase 2 study of oral azacitidine (CC-486) plus CHOP as initial treatment for PTCL. Blood. 2023;141(18):2194–205. https://doi.org/10.1182/blood.2022018254.
留言 (0)