Reduced OTUD7B expression correlates with poor prognosis in PTCL via non-canonical NF-κB

Alaggio R, Amador C, Anagnostopoulos I, Attygalle AD, Araujo IBO, Berti E, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia. 2022;36(7):1720–48. https://doi.org/10.1038/s41375-022-01620-2.

Article  PubMed  PubMed Central  Google Scholar 

Savage KJ, Harris NL, Vose JM, Ullrich F, Jaffe ES, Connors JM, et al. ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood. 2008;111(12):5496–504. https://doi.org/10.1182/blood-2008-01-134270.

Article  CAS  PubMed  Google Scholar 

Nizamuddin I, Galvez C, Pro B. Management of ALCL and other CD30+ peripheral T-cell lymphomas with a focus on Brentuximab vedotin. Semin Hematol. 2021;58(2):85–94. https://doi.org/10.1053/j.seminhematol.2021.02.006.

Article  PubMed  Google Scholar 

Horwitz S, O’Connor OA, Pro B, Trumper L, Iyer S, Advani R, et al. The ECHELON-2 Trial: 5-year results of a randomized, phase III study of brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma. Ann Oncol. 2022;33(3):288–98. https://doi.org/10.1016/j.annonc.2021.12.002.

Article  CAS  PubMed  Google Scholar 

Bachy E, Camus V, Thieblemont C, Sibon D, Casasnovas RO, Ysebaert L, et al. Romidepsin plus CHOP versus CHOP in patients with previously untreated peripheral T-cell lymphoma: results of the Ro-CHOP phase III study (conducted by LYSA). J Clin Oncol. 2022;40(3):242–51. https://doi.org/10.1200/JCO.21.01815.

Article  CAS  PubMed  Google Scholar 

Bellei M, Federico M. The outcome of peripheral T-cell lymphoma patients failing first-line therapy: a report from the prospective international T-cell project. Haematologica. 2019;104(4): e178. https://doi.org/10.3324/haematol.2019.218305.

Article  PubMed  PubMed Central  Google Scholar 

Evans PC, Smith TS, Lai MJ, Williams MG, Burke DF, Heyninck K, et al. A novel type of deubiquitinating enzyme. J Biol Chem. 2003;278(25):23180–6. https://doi.org/10.1074/jbc.M301863200.

Article  CAS  PubMed  Google Scholar 

Chen S, Cai K, Zheng D, Liu Y, Li L, He Z, et al. RHBDL2 promotes the proliferation, migration, and invasion of pancreatic cancer by stabilizing the N1ICD via the OTUD7B and activating the Notch signaling pathway. Cell Death Dis. 2022;13(11):945. https://doi.org/10.1038/s41419-022-05379-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang J, Wu Z, Tian Z, Chen W, Wu G. OTUD7B stabilizes estrogen receptor alpha and promotes breast cancer cell proliferation. Cell Death Dis. 2021;12(6):534. https://doi.org/10.1038/s41419-021-03785-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang B, Jie Z, Joo D, Ordureau A, Liu P, Gan W, et al. TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature. 2017;545(7654):365–9. https://doi.org/10.1038/nature22344.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang JH, Zhong XP, Zhang YF, Wu XL, Li SH, Jian PE, et al. Cezanne predicts progression and adjuvant TACE response in hepatocellular carcinoma. Cell Death Dis. 2017;8(9): e3043. https://doi.org/10.1038/cddis.2017.428.

Article  PubMed  PubMed Central  Google Scholar 

Hu H, Brittain GC, Chang JH, Puebla-Osorio N, Jin J, Zal A, et al. OTUD7B controls non-canonical NF-kappaB activation through deubiquitination of TRAF3. Nature. 2013;494(7437):371–4. https://doi.org/10.1038/nature11831.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qiu S, Liu Y, Gui A, Xia Z, Liu W, Gu JJ, et al. Deubiquitinase OTUD7B is a potential prognostic biomarker in diffuse large B-cell lymphoma. J Cancer. 2022;13(3):998–1004. https://doi.org/10.7150/jca.65835.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90. https://doi.org/10.1182/blood-2016-01-643569.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pareja F, Ferraro DA, Rubin C, Cohen-Dvashi H, Zhang F, Aulmann S, et al. Deubiquitination of EGFR by Cezanne-1 contributes to cancer progression. Oncogene. 2012;31(43):4599–608. https://doi.org/10.1038/onc.2011.587.

Article  CAS  PubMed  Google Scholar 

Lin DD, Shen Y, Qiao S, Liu WW, Zheng L, Wang YN, et al. Upregulation of OTUD7B (Cezanne) promotes tumor progression via AKT/VEGF pathway in lung squamous carcinoma and adenocarcinoma. Front Oncol. 2019;9:862. https://doi.org/10.3389/fonc.2019.00862.

Article  PubMed  PubMed Central  Google Scholar 

Zhang B, Yang C, Wang R, Wu J, Zhang Y, Liu D, et al. OTUD7B suppresses Smac mimetic-induced lung cancer cell invasion and migration via deubiquitinating TRAF3. J Exp Clin Cancer Res. 2020;39(1):244. https://doi.org/10.1186/s13046-020-01751-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang B, Wang H, Yang L, Zhang Y, Wang P, Huang G, et al. OTUD7B and NIK expression in non-small cell lung cancer: association with clinicopathological features and prognostic implications. Pathol Res Pract. 2016;212(10):893–8. https://doi.org/10.1016/j.prp.2016.07.011.

Article  CAS  PubMed  Google Scholar 

Wang JH, Wei W, Guo ZX, Shi M, Guo RP. Decreased Cezanne expression is associated with the progression and poor prognosis in hepatocellular carcinoma. J Transl Med. 2015;13:41. https://doi.org/10.1186/s12967-015-0396-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu H, Wang H, Xiao Y, Jin J, Chang JH, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213(3):399–414. https://doi.org/10.1084/jem.20151426.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moon CS, Reglero C, Cortes JR, Quinn SA, Alvarez S, Zhao J, et al. FYN-TRAF3IP2 induces NF-kappaB signaling-driven peripheral T cell lymphoma. Nat Cancer. 2021;2(1):98–113. https://doi.org/10.1038/s43018-020-00161-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Debackere K, Marcelis L, Demeyer S, Vanden Bempt M, Mentens N, Gielen O, et al. Fusion transcripts FYN-TRAF3IP2 and KHDRBS1-LCK hijack T cell receptor signaling in peripheral T-cell lymphoma, not otherwise specified. Nat Commun. 2021;12(1):3705. https://doi.org/10.1038/s41467-021-24037-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Odqvist L, Sanchez-Beato M, Montes-Moreno S, Martin-Sanchez E, Pajares R, Sanchez-Verde L, et al. NIK controls classical and alternative NF-kappaB activation and is necessary for the survival of human T-cell lymphoma cells. Clin Cancer Res. 2013;19(9):2319–30. https://doi.org/10.1158/1078-0432.CCR-12-3151.

Article  CAS  PubMed  Google Scholar 

Lemonnier F, Dupuis J, Sujobert P, Tournillhac O, Cheminant M, Sarkozy C, et al. Treatment with 5-azacytidine induces a sustained response in patients with angioimmunoblastic T-cell lymphoma. Blood. 2018;132(21):2305–9. https://doi.org/10.1182/blood-2018-04-840538.

Article  CAS  PubMed  Google Scholar 

Yoon SE, Cho J, Kim YJ, Kim SJ, Kim WS. Real-world efficacy of 5-azacytidine as salvage chemotherapy for angioimmunoblastic T-cell lymphoma. Clin Lymphoma Myeloma Leuk. 2022;22(11):e972–80. https://doi.org/10.1016/j.clml.2022.07.009.

Article  CAS  PubMed  Google Scholar 

Ruan J, Moskowitz A, Mehta-Shah N, Sokol L, Chen Z, Kotlov N, et al. Multicenter phase 2 study of oral azacitidine (CC-486) plus CHOP as initial treatment for PTCL. Blood. 2023;141(18):2194–205. https://doi.org/10.1182/blood.2022018254.

留言 (0)

沒有登入
gif