Formation of long-term memory without short-term memory revealed by CaMKII inhibition

Hebb, D. O. The Organization of Behavior: A Neuropsychological Theory (Psychology Press, 1949).

Kandel, E. R., Dudai, Y. & Mayford, M. R. The molecular and systems biology of memory. Cell 157, 163–186 (2014).

Article  CAS  PubMed  Google Scholar 

Dudai, Y., Karni, A. & Born, J. The consolidation and transformation of memory. Neuron 88, 20–32 (2015).

Article  CAS  PubMed  Google Scholar 

Hernandez, P. J. & Abel, T. The role of protein synthesis in memory consolidation: progress amid decades of debate. Neurobiol. Learn. Mem. 89, 293–311 (2008).

Article  CAS  PubMed  Google Scholar 

Goto, A. et al. Stepwise synaptic plasticity events drive the early phase of memory consolidation. Science 374, 857–863 (2021).

Article  CAS  PubMed  Google Scholar 

Wally, M. E., Nomoto, M., Abdou, K., Murayama, E. & Inokuchi, K. A short-term memory trace persists for days in the mouse hippocampus. Commun. Biol. 5, 1168 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Izquierdo, L. A. et al. Molecular pharmacological dissection of short- and long-term memory. Cell. Mol. Neurobiol. 22, 269–287 (2002).

Article  CAS  PubMed  Google Scholar 

Sutton, M. A., Masters, S. E., Bagnall, M. W. & Carew, T. J. Molecular mechanisms underlying a unique intermediate phase of memory in Aplysia. Neuron 31, 143–154 (2001).

Article  CAS  PubMed  Google Scholar 

Gomis-González, M. et al. Protein kinase C-γ knockout mice show impaired hippocampal short-term memory while preserved long-term memory. Mol. Neurobiol. 58, 617–630 (2021).

Article  PubMed  Google Scholar 

Trannoy, S., Redt-Clouet, C., Dura, J.-M. & Preat, T. Parallel processing of appetitive short- and long-term memories in Drosophila. Curr. Biol. 21, 1647–1653 (2011).

Article  CAS  PubMed  Google Scholar 

Izquierdo, I. et al. Mechanisms for memory types differ. Nature 393, 635–636 (1998).

Article  CAS  PubMed  Google Scholar 

Silva, A. J., Paylor, R., Wehner, J. M. & Tonegawa, S. Impaired spatial learning in α-calcium-calmodulin kinase II mutant mice. Science 257, 206–211 (1992).

Article  CAS  PubMed  Google Scholar 

Giese, K. P., Fedorov, N. B., Filipkowski, R. K. & Silva, A. J. Autophosphorylation at Thr286 of the α calcium-calmodulin kinase II in LTP and learning. Science 279, 870–873 (1998).

Article  CAS  PubMed  Google Scholar 

Yamagata, Y. et al. Kinase-dead knock-in mouse reveals an essential role of kinase activity of Ca2+/calmodulin-dependent protein kinase IIα in dendritic spine enlargement, long-term potentiation, and learning. J. Neurosci. 29, 7607–7618 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Irvine, E. E., Vernon, J. & Giese, K. P. AlphaCaMKII autophosphorylation contributes to rapid learning but is not necessary for memory. Nat. Neurosci. 8, 411–412 (2005).

Article  CAS  PubMed  Google Scholar 

Kimura, R., Silva, A. J. & Ohno, M. Autophosphorylation of αCaMKII is differentially involved in new learning and unlearning mechanisms of memory extinction. Learn. Mem. 15, 837–843 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Yamagata, Y., Yanagawa, Y. & Imoto, K. Differential involvement of kinase activity of Ca2+/calmodulin-dependent protein kinase IIα in hippocampus- and amygdala-dependent memory revealed by kinase-dead knock-in mouse. eNeuro 5, ENEURO.0133-18.2018 (2018).

Murakoshi, H. et al. Kinetics of endogenous CaMKII required for synaptic plasticity revealed by optogenetic kinase inhibitor. Neuron 94, 37–47.e5 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang, J.-Y. et al. CaMKII autophosphorylation is necessary for optimal integration of Ca2+ signals during LTP induction but not maintenance. Neuron 94, 800–808.e4 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coultrap, S. J. et al. Autonomous CaMKII mediates both LTP and LTD using a mechanism for differential substrate site selection. Cell Rep. 6, 431–437 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McKernan, M. G. & Shinnick-Gallagher, P. Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390, 607–611 (1997).

Article  CAS  PubMed  Google Scholar 

Irvine, E. E. et al. Properties of contextual memory formed in the absence of αCaMKII autophosphorylation. Mol. Brain 4, 8 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Radwanska, K. et al. Mechanism for long-term memory formation when synaptic strengthening is impaired. Proc. Natl Acad. Sci. USA 108, 18471–18475 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giese, K. P., Aziz, W., Kraev, I. & Stewart, M. G. Generation of multi-innervated dendritic spines as a novel mechanism of long-term memory formation. Neurobiol. Learn. Mem. 124, 48–51 (2015).

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif