Hebb, D. O. The Organization of Behavior: A Neuropsychological Theory (Psychology Press, 1949).
Kandel, E. R., Dudai, Y. & Mayford, M. R. The molecular and systems biology of memory. Cell 157, 163–186 (2014).
Article CAS PubMed Google Scholar
Dudai, Y., Karni, A. & Born, J. The consolidation and transformation of memory. Neuron 88, 20–32 (2015).
Article CAS PubMed Google Scholar
Hernandez, P. J. & Abel, T. The role of protein synthesis in memory consolidation: progress amid decades of debate. Neurobiol. Learn. Mem. 89, 293–311 (2008).
Article CAS PubMed Google Scholar
Goto, A. et al. Stepwise synaptic plasticity events drive the early phase of memory consolidation. Science 374, 857–863 (2021).
Article CAS PubMed Google Scholar
Wally, M. E., Nomoto, M., Abdou, K., Murayama, E. & Inokuchi, K. A short-term memory trace persists for days in the mouse hippocampus. Commun. Biol. 5, 1168 (2022).
Article CAS PubMed PubMed Central Google Scholar
Izquierdo, L. A. et al. Molecular pharmacological dissection of short- and long-term memory. Cell. Mol. Neurobiol. 22, 269–287 (2002).
Article CAS PubMed Google Scholar
Sutton, M. A., Masters, S. E., Bagnall, M. W. & Carew, T. J. Molecular mechanisms underlying a unique intermediate phase of memory in Aplysia. Neuron 31, 143–154 (2001).
Article CAS PubMed Google Scholar
Gomis-González, M. et al. Protein kinase C-γ knockout mice show impaired hippocampal short-term memory while preserved long-term memory. Mol. Neurobiol. 58, 617–630 (2021).
Trannoy, S., Redt-Clouet, C., Dura, J.-M. & Preat, T. Parallel processing of appetitive short- and long-term memories in Drosophila. Curr. Biol. 21, 1647–1653 (2011).
Article CAS PubMed Google Scholar
Izquierdo, I. et al. Mechanisms for memory types differ. Nature 393, 635–636 (1998).
Article CAS PubMed Google Scholar
Silva, A. J., Paylor, R., Wehner, J. M. & Tonegawa, S. Impaired spatial learning in α-calcium-calmodulin kinase II mutant mice. Science 257, 206–211 (1992).
Article CAS PubMed Google Scholar
Giese, K. P., Fedorov, N. B., Filipkowski, R. K. & Silva, A. J. Autophosphorylation at Thr286 of the α calcium-calmodulin kinase II in LTP and learning. Science 279, 870–873 (1998).
Article CAS PubMed Google Scholar
Yamagata, Y. et al. Kinase-dead knock-in mouse reveals an essential role of kinase activity of Ca2+/calmodulin-dependent protein kinase IIα in dendritic spine enlargement, long-term potentiation, and learning. J. Neurosci. 29, 7607–7618 (2009).
Article CAS PubMed PubMed Central Google Scholar
Irvine, E. E., Vernon, J. & Giese, K. P. AlphaCaMKII autophosphorylation contributes to rapid learning but is not necessary for memory. Nat. Neurosci. 8, 411–412 (2005).
Article CAS PubMed Google Scholar
Kimura, R., Silva, A. J. & Ohno, M. Autophosphorylation of αCaMKII is differentially involved in new learning and unlearning mechanisms of memory extinction. Learn. Mem. 15, 837–843 (2008).
Article PubMed PubMed Central Google Scholar
Yamagata, Y., Yanagawa, Y. & Imoto, K. Differential involvement of kinase activity of Ca2+/calmodulin-dependent protein kinase IIα in hippocampus- and amygdala-dependent memory revealed by kinase-dead knock-in mouse. eNeuro 5, ENEURO.0133-18.2018 (2018).
Murakoshi, H. et al. Kinetics of endogenous CaMKII required for synaptic plasticity revealed by optogenetic kinase inhibitor. Neuron 94, 37–47.e5 (2017).
Article CAS PubMed PubMed Central Google Scholar
Chang, J.-Y. et al. CaMKII autophosphorylation is necessary for optimal integration of Ca2+ signals during LTP induction but not maintenance. Neuron 94, 800–808.e4 (2017).
Article CAS PubMed PubMed Central Google Scholar
Coultrap, S. J. et al. Autonomous CaMKII mediates both LTP and LTD using a mechanism for differential substrate site selection. Cell Rep. 6, 431–437 (2014).
Article CAS PubMed PubMed Central Google Scholar
McKernan, M. G. & Shinnick-Gallagher, P. Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390, 607–611 (1997).
Article CAS PubMed Google Scholar
Irvine, E. E. et al. Properties of contextual memory formed in the absence of αCaMKII autophosphorylation. Mol. Brain 4, 8 (2011).
Article CAS PubMed PubMed Central Google Scholar
Radwanska, K. et al. Mechanism for long-term memory formation when synaptic strengthening is impaired. Proc. Natl Acad. Sci. USA 108, 18471–18475 (2011).
Article CAS PubMed PubMed Central Google Scholar
Giese, K. P., Aziz, W., Kraev, I. & Stewart, M. G. Generation of multi-innervated dendritic spines as a novel mechanism of long-term memory formation. Neurobiol. Learn. Mem. 124, 48–51 (2015).
留言 (0)