Engineered platelets as targeted protein degraders and application to breast cancer models

Sakamoto, K. M. et al. PROTACs: chimeric molecules that target proteins to the Skp1–Cullin-F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pance, K. et al. Modular cytokine receptor-targeting chimeras for targeted degradation of cell surface and extracellular proteins. Nat. Biotechnol. 41, 273–281 (2023).

Article  CAS  PubMed  Google Scholar 

Alabi, S. B. & Crews, C. M. Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs. J. Biol. Chem. 296, 100647 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bekes, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, Y. et al. Small-molecule ferritin degrader as a pyroptosis inducer. J. Am. Chem. Soc. 145, 9815–9824 (2023).

Article  CAS  PubMed  Google Scholar 

Wei, J. et al. Harnessing the E3 ligase KEAP1 for targeted protein degradation. J. Am. Chem. Soc. 143, 15073–15083 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Imaide, S. et al. Trivalent PROTACs enhance protein degradation via combined avidity and cooperativity. Nat. Chem. Biol. 17, 1157–1167 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caianiello, D. F. et al. Bifunctional small molecules that mediate the degradation of extracellular proteins. Nat. Chem. Biol. 17, 947–953 (2021).

Article  CAS  PubMed  Google Scholar 

Ahn, G. et al. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat. Chem. Biol. 17, 937–946 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guedeney, N., Cornu, M., Schwalen, F., Kieffer, C. & Voisin-Chiret, A. S. PROTAC technology: a new drug design for chemical biology with many challenges in drug discovery. Drug Discov. Today 28, 103395 (2023).

Article  CAS  PubMed  Google Scholar 

Chen, Y. et al. Proteolysis-targeting chimera (PROTAC) delivery system: advancing protein degraders towards clinical translation. Chem. Soc. Rev. 51, 5330–5350 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garber, K. The PROTAC gold rush. Nat. Biotechnol. 40, 12–16 (2022).

Article  CAS  PubMed  Google Scholar 

Ahn, G. et al. Elucidating the cellular determinants of targeted membrane protein degradation by lysosome-targeting chimeras. Science 382, eadf6249 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gadd, M. S. et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 13, 514–521 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takahashi, D. et al. AUTACs: cargo-specific degraders using selective autophagy. Mol. Cell 76, 797–810.e10 (2019).

Li, Z. et al. Allele-selective lowering of mutant HTT protein by HTT–LC3 linker compounds. Nature 575, 203–209 (2019).

Article  CAS  PubMed  Google Scholar 

Stanton, B. Z., Chory, E. J. & Crabtree, G. R. Chemically induced proximity in biology and medicine. Science 359, eaao5902 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Bai, L. et al. A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell 36, 498–511.e17 (2019).

Chirnomas, D., Hornberger, K. R. & Crews, C. M. Protein degraders enter the clinic—a new approach to cancer therapy. Nat. Rev. Clin. Oncol. 20, 265–278 (2023).

Article  CAS  PubMed  Google Scholar 

Wurz, R. P. et al. Affinity and cooperativity modulate ternary complex formation to drive targeted protein degradation. Nat. Commun. 14, 4177 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tamura, T. et al. Rapid labelling and covalent inhibition of intracellular native proteins using ligand-directed N-acyl-N-alkyl sulfonamide. Nat. Commun. 9, 1870 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Beerkens, B. L. H. et al. N-Acyl-N-alkyl sulfonamide probes for ligand-directed covalent labeling of GPCRs: the adenosine A2B receptor as case study. ACS Chem. Biol. 19, 1554–1562 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kawano, M. et al. Lysine-reactive N-acyl-N-aryl sulfonamide warheads: improved reaction properties and application in the covalent inhibition of an ibrutinib-resistant BTK mutant. J. Am. Chem. Soc. 145, 26202–26212 (2023).

Article  CAS  PubMed  Google Scholar 

Caldas-Lopes, E. et al. Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc. Natl Acad. Sci. USA 106, 8368–8373 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schopf, F. H., Biebl, M. M. & Buchner, J. The HSP90 chaperone machinery. Nat. Rev. Mol. Cell Biol. 18, 345–360 (2017).

Article  CAS  PubMed  Google Scholar 

Cuesta, A., Wan, X., Burlingame, A. L. & Taunton, J. Ligand conformational bias drives enantioselective modification of a surface-exposed lysine on HSP90. J. Am. Chem. Soc. 142, 3392–3400 (2020).

Article  CAS  PubMed  Google Scholar 

Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, X. et al. Therapeutic targeting of BET bromodomain protein, BRD4, delays cyst growth in ADPKD. Hum. Mol. Genet. 24, 3982–3993 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bondeson, D. P. et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611–617 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, C. et al. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat. Biomed. Eng. 1, 0011 (2017).

Hu, Q. et al. Inhibition of post-surgery tumour recurrence via a hydrogel releasing CAR-T cells and anti-PDL1-conjugated platelets. Nat. Biomed. Eng. 5, 1038–1047 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif