Sakamoto, K. M. et al. PROTACs: chimeric molecules that target proteins to the Skp1–Cullin-F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001).
Article CAS PubMed PubMed Central Google Scholar
Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).
Article CAS PubMed PubMed Central Google Scholar
Pance, K. et al. Modular cytokine receptor-targeting chimeras for targeted degradation of cell surface and extracellular proteins. Nat. Biotechnol. 41, 273–281 (2023).
Article CAS PubMed Google Scholar
Alabi, S. B. & Crews, C. M. Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs. J. Biol. Chem. 296, 100647 (2021).
Article CAS PubMed PubMed Central Google Scholar
Bekes, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).
Article CAS PubMed PubMed Central Google Scholar
Chen, Y. et al. Small-molecule ferritin degrader as a pyroptosis inducer. J. Am. Chem. Soc. 145, 9815–9824 (2023).
Article CAS PubMed Google Scholar
Wei, J. et al. Harnessing the E3 ligase KEAP1 for targeted protein degradation. J. Am. Chem. Soc. 143, 15073–15083 (2021).
Article CAS PubMed PubMed Central Google Scholar
Imaide, S. et al. Trivalent PROTACs enhance protein degradation via combined avidity and cooperativity. Nat. Chem. Biol. 17, 1157–1167 (2021).
Article CAS PubMed PubMed Central Google Scholar
Caianiello, D. F. et al. Bifunctional small molecules that mediate the degradation of extracellular proteins. Nat. Chem. Biol. 17, 947–953 (2021).
Article CAS PubMed Google Scholar
Ahn, G. et al. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat. Chem. Biol. 17, 937–946 (2021).
Article CAS PubMed PubMed Central Google Scholar
Guedeney, N., Cornu, M., Schwalen, F., Kieffer, C. & Voisin-Chiret, A. S. PROTAC technology: a new drug design for chemical biology with many challenges in drug discovery. Drug Discov. Today 28, 103395 (2023).
Article CAS PubMed Google Scholar
Chen, Y. et al. Proteolysis-targeting chimera (PROTAC) delivery system: advancing protein degraders towards clinical translation. Chem. Soc. Rev. 51, 5330–5350 (2022).
Article CAS PubMed PubMed Central Google Scholar
Garber, K. The PROTAC gold rush. Nat. Biotechnol. 40, 12–16 (2022).
Article CAS PubMed Google Scholar
Ahn, G. et al. Elucidating the cellular determinants of targeted membrane protein degradation by lysosome-targeting chimeras. Science 382, eadf6249 (2023).
Article CAS PubMed PubMed Central Google Scholar
Gadd, M. S. et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 13, 514–521 (2017).
Article CAS PubMed PubMed Central Google Scholar
Takahashi, D. et al. AUTACs: cargo-specific degraders using selective autophagy. Mol. Cell 76, 797–810.e10 (2019).
Li, Z. et al. Allele-selective lowering of mutant HTT protein by HTT–LC3 linker compounds. Nature 575, 203–209 (2019).
Article CAS PubMed Google Scholar
Stanton, B. Z., Chory, E. J. & Crabtree, G. R. Chemically induced proximity in biology and medicine. Science 359, eaao5902 (2018).
Article PubMed PubMed Central Google Scholar
Bai, L. et al. A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell 36, 498–511.e17 (2019).
Chirnomas, D., Hornberger, K. R. & Crews, C. M. Protein degraders enter the clinic—a new approach to cancer therapy. Nat. Rev. Clin. Oncol. 20, 265–278 (2023).
Article CAS PubMed Google Scholar
Wurz, R. P. et al. Affinity and cooperativity modulate ternary complex formation to drive targeted protein degradation. Nat. Commun. 14, 4177 (2023).
Article CAS PubMed PubMed Central Google Scholar
Tamura, T. et al. Rapid labelling and covalent inhibition of intracellular native proteins using ligand-directed N-acyl-N-alkyl sulfonamide. Nat. Commun. 9, 1870 (2018).
Article PubMed PubMed Central Google Scholar
Beerkens, B. L. H. et al. N-Acyl-N-alkyl sulfonamide probes for ligand-directed covalent labeling of GPCRs: the adenosine A2B receptor as case study. ACS Chem. Biol. 19, 1554–1562 (2024).
Article CAS PubMed PubMed Central Google Scholar
Kawano, M. et al. Lysine-reactive N-acyl-N-aryl sulfonamide warheads: improved reaction properties and application in the covalent inhibition of an ibrutinib-resistant BTK mutant. J. Am. Chem. Soc. 145, 26202–26212 (2023).
Article CAS PubMed Google Scholar
Caldas-Lopes, E. et al. Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc. Natl Acad. Sci. USA 106, 8368–8373 (2009).
Article CAS PubMed PubMed Central Google Scholar
Schopf, F. H., Biebl, M. M. & Buchner, J. The HSP90 chaperone machinery. Nat. Rev. Mol. Cell Biol. 18, 345–360 (2017).
Article CAS PubMed Google Scholar
Cuesta, A., Wan, X., Burlingame, A. L. & Taunton, J. Ligand conformational bias drives enantioselective modification of a surface-exposed lysine on HSP90. J. Am. Chem. Soc. 142, 3392–3400 (2020).
Article CAS PubMed Google Scholar
Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).
Article CAS PubMed PubMed Central Google Scholar
Zhou, X. et al. Therapeutic targeting of BET bromodomain protein, BRD4, delays cyst growth in ADPKD. Hum. Mol. Genet. 24, 3982–3993 (2015).
Article CAS PubMed PubMed Central Google Scholar
Bondeson, D. P. et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611–617 (2015).
Article CAS PubMed PubMed Central Google Scholar
Wang, C. et al. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat. Biomed. Eng. 1, 0011 (2017).
Hu, Q. et al. Inhibition of post-surgery tumour recurrence via a hydrogel releasing CAR-T cells and anti-PDL1-conjugated platelets. Nat. Biomed. Eng. 5, 1038–1047 (2021).
留言 (0)