Adamczyk, Adamczyk-Sowa (2016) New insights into the role of oxidative stress mechanisms in the pathophysiology and treatment of multiple sclerosis. Oxid Med Cell Longev 2016:1973834. https://doi.org/10.1155/2016/1973834
Adamczyk-Sowa, Pierzchala, Sowa, Mucha, Sadowska-Bartosz, Adamczyk, Hartel (2014) Melatonin acts as antioxidant and improves sleep in MS patients. Neurochem Res 39:1585–1593. https://doi.org/10.1007/s11064-014-1347-6
Adamczyk-Sowa H (2014) Influence of melatonin supplementation on serum antioxidative properties and impact of the quality of life in multiple sclerosis patients. J Physiol Pharmacol 65:543–550
Adamczyk-Sowa, Sowa, Adamczyk, Niedziela M, Owczarek, Zwirska-Korczala (2016) Effect of melatonin supplementation on plasma lipid hydroperoxides, homocysteine concentration and chronic fatigue syndrome in multiple sclerosis patients treated with interferons-beta and mitoxantrone. J Physiol Pharmacol 67:235–242
Adamec, Crnošija, Junaković, Krbot Skorić, Habek (2018) Progressive multiple sclerosis patients have a higher burden of autonomic dysfunction compared to relapsing remitting phenotype. Clin Neurophysiol 129:1588–1594. https://doi.org/10.1016/j.clinph.2018.05.009
Almeida-Santos, Barreto-Filho, Oliveira, Reis, da Cunha Oliveira, Sousa (2016) Aging, heart rate variability and patterns of autonomic regulation of the heart. Arch Gerontol Geriatr 63:1–8. https://doi.org/10.1016/j.archger.2015.11.011
Andersen, Gögenur, Rosenberg, Reiter (2016) The safety of melatonin in humans. Clin Drug Investig 36:169–175. https://doi.org/10.1007/s40261-015-0368-5
Arbel, Shenhar-Tsarfaty, Waiskopf, et al (2014) Decline in serum cholinesterase activities predicts 2-year major adverse cardiac events. Mol Med 20:38–45. https://doi.org/10.2119/molmed.2013.00139
Baek H, Choi-Kwon (2020) Sleep diary-and actigraphy-derived sleep parameters of 8-hour fast-rotating shift work nurses: a prospective descriptive study. Int J Nurs Stud 112:103719. https://doi.org/10.1016/j.ijnurstu.2020.103719
Beck, Botezelli, Pauli, Ropelle, Gobatto (2015) Melatonin has an ergogenic effect but does not prevent inflammation and damage in exhaustive exercise. Sci Rep 5:18065. https://doi.org/10.1038/srep18065
Beyaztas, Uzun, Aktas, Guler (2022) Effects of oxidative stress, DNA damage, and inflammation in multiple sclerosis: a clinical perspective. Ovidius Univ Annals Chem 33:166–171. https://doi.org/10.2478/auoc-2022-0024
Brydges (2019) Effect size guidelines, sample size calculations, and statistical power in gerontology. Innov Aging 3:igz036. https://doi.org/10.1093/geroni/igz036
Campese, Ye, Zhong, Yanamadala, Ye, Chiu (2004) Reactive oxygen species stimulate central and peripheral sympathetic nervous system activity. Am J Physiol Heart Circ Physiol 287:H695–703. https://doi.org/10.1152/ajpheart.00619.2003
Campos, Bueno, Barcelos, et al (2020) Melatonin therapy improves cardiac autonomic modulation in pinealectomized patients. Front Endocrinol (Lausanne) 11:239. https://doi.org/10.3389/fendo.2020.00239
Carneiro, Azoubel, Dias, et al (2022) Correlation of sleep quality and cardiac autonomic modulation in hemodialysis patients. Sleep Sci 15:59–64. https://doi.org/10.5935/1984-0063.20200126
Carney, Buysse, Ancoli-Israel, Edinger, Krystal, Lichstein, Morin (2012) The consensus sleep diary: standardizing prospective sleep self-monitoring. Sleep 35:287–302. https://doi.org/10.5665/sleep.1642
Charabati, Wheeler, Weiner, Quintana (2023) Multiple sclerosis: Neuroimmune crosstalk and therapeutic targeting. Cell 186:1309–1327. https://doi.org/10.1016/j.cell.2023.03.008
Chen, Ye, Cheng, Xue, Li, Shao (2022) The association between vitamin D levels and heart rate variability in patients with type 2 diabetes mellitus. Med (Baltim) 101:e30216. https://doi.org/10.1097/md.0000000000030263
Delgado-Lara, González-Enríquez, Torres-Mendoza et al (2020) Effect of melatonin administration on the PER1 and BMAL1 clock genes in patients with Parkinson’s disease. Biomed Pharmacother 129:110485. https://doi.org/10.1016/j.biopha.2020.110485
Ellman (1959) Tissue sulphydryl groups. Arch Biochem Biophys 82. https://doi.org/10.1016/0003-9861(59)90090-6
Fadaee, Beetham, Howden, Stanton, Isbel, Coombes (2017) Oxidative stress is associated with decreased heart rate variability in patients with chronic kidney disease. Redox Rep 22:197–204. https://doi.org/10.1080/13510002.2016.1173326
Farjallah, Graja, Mahmoud et al (2022) Effects of melatonin ingestion on physical performance and biochemical responses following exhaustive running exercise in soccer players. Biol Sport 39:473–479. https://doi.org/10.5114/biolsport.2022.106385
Faul, Erdfelder, Lang, Buchner (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191. https://doi.org/10.3758/bf03193146
French, Reid, Mamontov, Simmons, Grinspan (2009) Oxidative stress disrupts oligodendrocyte maturation. J Neurosci Res 87:3076–3087. https://doi.org/10.1002/jnr.22139
Gerasimova-Meigal, Sirenev, Meigal (2021) Evidence of autonomic dysfunction in patients with relapsing-remitting multiple sclerosis: Heart Rate Variability and Cardiovascular parameters. Pathophysiology 28:10–19. https://doi.org/10.3390/pathophysiology28010002
Ghareghani, Scavo, Arnoult, Zibara, Farhadi (2018) Melatonin therapy reduces the risk of osteoporosis and normalizes bone formation in multiple sclerosis. Fundam Clin Pharmacol 32:181–187. https://doi.org/10.1111/fcp.12337
Gosney, Scott, Snook, Motl (2007) Physical activity and multiple sclerosis: validity of self-report and objective measures. Fam Community Health 30:144–150. https://doi.org/10.1097/01.fch.0000264411.20766.0c
Grut, Biström, Salzer et al (2022) Systemic inflammation and risk of multiple sclerosis–A presymptomatic case-control study. Mult Scler J Exp Transl Clin 8:20552173221139768. https://doi.org/10.1177/20552173221139768
Hardeland, Madrid, Tan, Reiter (2012) Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J Pineal Res 52:139–166. https://doi.org/10.1111/j.1600-079X.2011.00934.x
Harpsøe, Andersen, Gögenur, Rosenberg (2015) Clinical pharmacokinetics of melatonin: a systematic review. Eur J Clin Pharmacol 71:901–909. https://doi.org/10.1007/s00228-015-1873-4
Härtter, Wang, Weigmann, Friedberg, Arand, Oesch, Hiemke (2001) Differential effects of fluvoxamine and other antidepressants on the biotransformation of melatonin. J Clin Psychopharmacol 21:167–174. https://doi.org/10.1097/00004714-200104000-00008
Hsu, Anderson, Rowles et al (2021) Effects of melatonin on sleep disturbances in multiple sclerosis: a randomized, controlled pilot study. Mult Scler J Exp Transl Clin 7:20552173211048756. https://doi.org/10.1177/20552173211048756
Hu (1994) Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol 233:380–385. https://doi.org/10.1016/s0076-6879(94)33044-1
Jallouli, Ghroubi, Ben Dhia et al (2022) Effect of melatonin intake on postural balance, functional mobility and fall risk in persons with multiple sclerosis: a pilot study. Int J Neurosci 1–11. https://doi.org/10.1080/00207454.2022.2090353
Jallouli, Ghroubi, Sakka et al (2024) Effects of a nighttime melatonin ingestion on dynamic postural balance and muscle strength the following morning in people living with multiple sclerosis: a preliminary study. Clin Neurol Neurosurg 108165. https://doi.org/10.1016/j.clineuro.2024.108165
Kim, Shin (2014) How to do random allocation (randomization). Clin Orthop Surg 6:103–109. https://doi.org/10.4055/cios.2014.6.1.103
Kurtzke (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452. https://doi.org/10.1212/wnl.33.11.1444
Laborde, Dosseville, Aloui, Ben Saad (2018) Convergent and construct validity and test-retest reliability of the Caen Chronotype Questionnaire in six languages. Chronobiol Int 35:1294–1304. https://doi.org/10.1080/07420528.2018.1475396
Mallinson, Kamenetsky, Hagen, Peppard (2019) Subjective sleep measurement: comparing sleep diary to questionnaire. Nat Sci Sleep 11:197–206. https://doi.org/10.2147/NSS.S217867
Matteucci, Biasci, Giampietro (2001) Advanced oxidation protein products in plasma: stability during storage and correlation with other clinical characteristics. Acta Diabetol 38:187–189. https://doi.org/10.1007/s592-001-8077-3
Melamud, Golan, Luboshitzky, Lavi, Miller (2012) Melatonin dysregulation, sleep disturbances and fatigue in multiple sclerosis. J Neurol Sci 314:37–40. https://doi.org/10.1016/j.jns.2011.11.003
Morris, Walker, Walder et al (2021) Increasing Nrf2 activity as a treatment approach in neuropsychiatry. Mol Neurobiol 58:2158–2182. https://doi.org/10.1007/s12035-020-02212-w
Morsali, Sabahi, Kakaei et al (2023) Clinical efficacy and safety of melatonin supplementation in multiple sclerosis: a systematic review. Inflammopharmacology 31:2213–2220. https://doi.org/10.1007/s10787-023-01271-4
Muñoz-Jurado, Escribano, Caballero-Villarraso, Galván, Agüera, Santamaría, Túnez (2022) Melatonin and multiple sclerosis: antioxidant, anti-inflammatory and immunomodulator mechanism of action. Inflammopharmacol 30:1569–1596. https://doi.org/10.1007/s10787-022-01011-0
Ohkawa, Ohishi, Yagi (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738-3
Padureanu, Albu, Mititelu et al (2019) Oxidative stress and inflammation interdependence in multiple sclerosis. J Clin Med 8:1815. https://doi.org/10.3390/jcm8111815
Perrotta, Jeklin, Hives, Meanwell, Warburton (2017) Validity of the Elite HRV Smartphone application for examining heart rate variability in a field-based setting. J Strength Cond Res 31:2296–2302. https://doi.org/10.1519/jsc.0000000000001841
Queisi M, Attarian H, Cipriani VP et al (2024) Multiple sclerosis, fatigue, expanded disability status scale: a cross-sectional exploration of sleep efficiency and quantitative sleep parameters. Int J MS Care 26:57–60. https://doi.org/10.7224/1537-2073.2022-118
Rundo, Downey III (2019) Polysomnography. Handbook of clinical neurology 160:381–392. https://doi.org/10.1016/B978-0-444-64032-1.00025-4
Rzepiński, Zawadka-Kunikowska, Newton, Zalewski, Słomko (2022) Cardiovascular autonomic dysfunction in multiple sclerosis-findings and relationships with clinical outcomes and fatigue severity. Neurol Sci 43:4829–4839. https://doi.org/10.1007/s10072-022-06099-4
Sajith, Clarke (2007) Melatonin and sleep disorders associated with intellectual disability: a clinical review. J Intellect Disabil Res 51:2–13. https://doi.org/10.1111/j.1365-2788.2006.00893.x
Sakkas, Giannaki, Karatzaferi, Manconi (2019) Sleep abnormalities in multiple sclerosis. Curr Treat Options Neurol 21:4. https://doi.org/10.1007/s11940-019-0544-7
Sanchez-Lopez, Ortiz, Pacheco-Moises et al (2018) Efficacy of melatonin on serum pro-inflammatory cytokines and oxidative stress markers in relapsing remitting multiple sclerosis. Arch Med Res 49:391–398. https://doi.org/10.1016/j.arcmed.2018.12.004
Sandyk, Awerbuch (1994) The relationship of pineal calcification to cerebral atrophy on CT scan in multiple sclerosis. Int J Neurosci 76:71–79. https://doi.org/10.3109/00207459408985993
Schaffarczyk, Rogers, Reer, Gronwald (2022) Validity of the Polar H10 Sensor for Heart Rate Variability analysis during resting state and Incremental Exercise in recreational men and women. Sensors 22. https://doi.org/10.3390/s22176536
Shaffer, Ginsberg (2017) An overview of heart rate variability metrics and norms. Front Public Health 5:258. https://doi.org/10.3389/fpubh.2017.00258
Sintzel, Rametta, Reder (2018) Vitamin D and multiple sclerosis: a comprehensive review. Neurol Ther 7:59–85. https://doi.org/10.1007/s40120-017-0086-4
Soh, Tan, Sehgal, Shirke, Ashry, Harky (2021) The relationship between vitamin D Status and cardiovascular diseases. Curr Probl Cardiol 46:100836. https://doi.org/10.1016/j.cpcardiol.2021.100836
Sternberg (2017) Impaired neurovisceral integration of cardiovascular modulation contributes to multiple sclerosis morbidities. Mol Neurobiol 54:362–374. https://doi.org/10.1007/s12035-015-9599-y
Takimoto, Kass (2007) Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 49:241–248. https://doi.org/10.1161/01.HYP.0000254415.31362.a7
Tarvainen, Niskanen, Lipponen, Ranta-Aho, Karjalainen (2014) Kubios HRV–heart rate variability analysis software. Comput Methods Programs Biomed 113:210–220. https://doi.org/10.1016/j.cmpb.2013.07.024
Van der Goes, Wouters, Van Der Pol et al (2001) Reactive oxygen species enhance the migration of monocytes across the blood-brain barrier in vitro. Faseb j 15:1852–1854. https://doi.org/10.1096/fj.00-0881fje
Weckbecker, Cory (1988) Ribonucleotide reductase activity and growth of glutathione-depleted mouse leukemia L1210 cells in vitro. Cancer Lett 40:257–264. https://doi.org/10.1016/0304-3835(88)90084-5
Wen, Wang, Luo, Meng, Zhao (2021) Melatonin exerts cardioprotective effects by inhibiting NLRP3 inflammasome-induced pyroptosis in mice following myocardial infarction. Oxid Med Cell Longev 2021:5387799. https://doi.org/10.1155/2021/5387799
Wu, Zhong, Pan, Zeng, Zheng, Zhu, Chen (2015) Advanced oxidation protein products as a novel marker of oxidative stress in postmenopausal osteoporosis. Med Sci Monit 21:2428–2432. https://doi.org/10.12659/MSM.894347
Zawilska, Skene, Arendt (2009) Physiology and pharmacology of melatonin in relation to biological rhythms. Pharmacol Rep 61:383–410. https://doi.org/10.1016/s1734-1140(09)70081-7
留言 (0)