Siletti, K. et al. Transcriptomic diversity of cell types across the adult human brain. Science 382, eadd7046 (2023).
Article CAS PubMed Google Scholar
Kim, S. S. et al. Leveraging single-cell ATAC-seq and RNA-seq to identify disease-critical fetal and adult brain cell types. Nat. Commun. 15, 563 (2024).
Article CAS PubMed PubMed Central Google Scholar
Sun, N. et al. Single-nucleus multiregion transcriptomic analysis of brain vasculature in Alzheimer’s disease. Nat. Neurosci. 26, 970–982 (2023).
Article CAS PubMed PubMed Central Google Scholar
Cain, A. et al. Multicellular communities are perturbed in the aging human brain and Alzheimer’s disease. Nat. Neurosci. 26, 1267–1280 (2023).
Article CAS PubMed PubMed Central Google Scholar
Kim, C. N., Shin, D., Wang, A. & Nowakowski, T. J. Spatiotemporal molecular dynamics of the developing human thalamus. Science 382, eadf9941 (2023).
Article CAS PubMed PubMed Central Google Scholar
Pineda, S. S. et al. Single-cell dissection of the human motor and prefrontal cortices in ALS and FTLD. Cell 187, 1971–1989 (2024).
Article CAS PubMed Google Scholar
Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).
Article CAS PubMed Google Scholar
Green, G. S. et al. Cellular communities reveal trajectories of brain ageing and Alzheimer’s disease. Nature https://doi.org/10.1038/s41586-024-07871-6 (2024).
Yao, Z. et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 624, 317–332 (2023).
Article CAS PubMed PubMed Central Google Scholar
Davis, A., Gao, R. & Navin, N. E. SCOPIT: sample size calculations for single-cell sequencing experiments. BMC Bioinformatics 20, 566 (2019).
Article PubMed PubMed Central Google Scholar
Schmid, K. T. et al. scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies. Nat. Commun. 12, 6625 (2021).
Article CAS PubMed PubMed Central Google Scholar
Su, K., Wu, Z. & Wu, H. Simulation, power evaluation and sample size recommendation for single-cell RNA-seq. Bioinformatics 36, 4860–4868 (2020).
Article CAS PubMed PubMed Central Google Scholar
Phipson, B. et al. Propeller: testing for differences in cell type proportions in single cell data. Bioinformatics 38, 4720–4726 (2022).
Article CAS PubMed PubMed Central Google Scholar
Lin, Y. et al. scClassify: sample size estimation and multiscale classification of cells using single and multiple reference. Mol. Syst. Biol. 16, e9389 (2020).
Article CAS PubMed PubMed Central Google Scholar
Jeon, H. et al. Statistical power analysis for designing bulk, single-cell, and spatial transcriptomics experiments: review, tutorial, and perspectives. Biomolecules 13, 221 (2023).
Article CAS PubMed PubMed Central Google Scholar
Ryaboshapkina, M. & Azzu, V. Sample size calculation for a NanoString GeoMx spatial transcriptomics experiment to study predictors of fibrosis progression in non-alcoholic fatty liver disease. Sci. Rep. 13, 8943 (2023).
Article CAS PubMed PubMed Central Google Scholar
Colonna, M. et al. Implementation and validation of single-cell genomics experiments in neuroscience. Nat. Neurosci. https://doi.org/10.1038/s41593-024-01814-0 (2024).
Zhang, Y. et al. Deconvolution algorithms for inference of the cell-type composition of the spatial transcriptome. Comput. Struct. Biotechnol. J. 21, 176–184 (2023).
Article CAS PubMed Google Scholar
Im, Y. & Kim, Y. A comprehensive overview of RNA deconvolution methods and their application. Mol. Cells 46, 99–105 (2023).
Article CAS PubMed PubMed Central Google Scholar
Charytonowicz, D., Brody, R. & Sebra, R. Interpretable and context-free deconvolution of multi-scale whole transcriptomic data with UniCell deconvolve. Nat. Commun. 14, 1350 (2023).
Article CAS PubMed PubMed Central Google Scholar
Chen, Y. et al. Deep autoencoder for interpretable tissue-adaptive deconvolution and cell-type-specific gene analysis. Nat. Commun. 13, 6735 (2022).
Article CAS PubMed PubMed Central Google Scholar
Liao, J. et al. De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution. Nat. Commun. 13, 6498 (2022).
Article CAS PubMed PubMed Central Google Scholar
Heimberg, G., Bhatnagar, R., El-Samad, H. & Thomson, M. Low dimensionality in gene expression data enables the accurate extraction of transcriptional programs from shallow sequencing. Cell Syst. 2, 239–250 (2016).
Article CAS PubMed PubMed Central Google Scholar
Haque, A., Engel, J., Teichmann, S. A. & Lönnberg, T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 9, 75 (2017).
Article PubMed PubMed Central Google Scholar
Boyce, R. W., Dorph-Petersen, K. -A., Lyck, L. & Gundersen, H. J. G. Design-based stereology: introduction to basic concepts and practical approaches for estimation of cell number. Toxicol. Pathol. 38, 1011–1025 (2010).
Adameyko, I. et al. Applying single-cell/nucleus genomics to studies of cellular heterogeneity and cell fate transitions in the nervous system. Nat. Neurosci. https://doi.org/10.1038/s41593-024-01827-9 (2024).
Yu, L., Cao, Y., Yang, J. Y. H. & Yang, P. Benchmarking clustering algorithms on estimating the number of cell types from single-cell RNA-sequencing data. Genome Biol. 23, 49 (2022).
Article CAS PubMed PubMed Central Google Scholar
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).
Article CAS PubMed PubMed Central Google Scholar
Swapna, L. S., Huang, M. & Li, Y. GTM-decon: guided-topic modeling of single-cell transcriptomes enables sub-cell-type and disease-subtype deconvolution of bulk transcriptomes. Genome Biol. 24, 190 (2023).
Article CAS PubMed PubMed Central Google Scholar
Zhang, S., Yang, L., Yang, J., Lin, Z. & Ng, M. K. Dimensionality reduction for single cell RNA sequencing data using constrained robust non-negative matrix factorization. NAR Genom. Bioinform. 2, lqaa064 (2020).
Article PubMed PubMed Central Google Scholar
Morabito, S., Reese, F., Rahimzadeh, N., Miyoshi, E. & Swarup, V. hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data. Cell Rep. Methods 3, 100498 (2023).
留言 (0)