Lipid-related radiomics of low-echo carotid plaques is associated with diabetic stroke and non-diabetic coronary heart disease

Song P, Fang Z, Wang H, Cai Y, Rahimi K, Zhu Y, Fowkes FGR, Fowkes FJI, Rudan I (2020) Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: a systematic review, meta-analysis, and modelling study. Lancet Global Health 8(5):e721–e729

Article  PubMed  Google Scholar 

Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, Federici M, Filippatos G, Grobbee DE, Hansen TB et al (2020) 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 41(2):255–323

Article  PubMed  Google Scholar 

Johri AM, Nambi V, Naqvi TZ, Feinstein SB, Kim ESH, Park MM, Becher H, Sillesen H (2020) Recommendations for the Assessment of Carotid arterial plaque by Ultrasound for the characterization of atherosclerosis and evaluation of Cardiovascular Risk: from the American Society of Echocardiography. J Am Soc Echocardiography: Official Publication Am Soc Echocardiography 33(8):917–933

Article  Google Scholar 

Weyer GW, Davis AM (2015) Screening for asymptomatic carotid artery stenosis. JAMA 313(2):192–193

Article  PubMed  CAS  Google Scholar 

Marx N, Federici M, Schütt K, Müller-Wieland D, Ajjan RA, Antunes MJ, Christodorescu RM, Crawford C, Di Angelantonio E, Eliasson B et al (2023) 2023 ESC guidelines for the management of cardiovascular disease in patients with diabetes. Eur Heart J 44(39):4043–4140

Article  PubMed  CAS  Google Scholar 

Mehta A, Rigdon J, Tattersall MC, German CA, Barringer TA 3rd, Joshi PH, Sperling LS, Budoff MJ, Bertoni A, Michos ED et al (2021) Association of Carotid Artery Plaque with Cardiovascular events and incident coronary artery calcium in individuals with absent coronary calcification: the MESA. Circulation Cardiovasc Imaging 14(4):e011701

Article  Google Scholar 

Bos D, Arshi B, van den Bouwhuijsen QJA, Ikram MK, Selwaness M, Vernooij MW, Kavousi M, van der Lugt A (2021) Atherosclerotic carotid plaque composition and incident stroke and coronary events. J Am Coll Cardiol 77(11):1426–1435

Article  PubMed  Google Scholar 

van der Toorn JE, Bos D, Ikram MK, Verwoert GC, van der Lugt A, Ikram MA, Vernooij MW, Kavousi M (2022) Carotid plaque composition and prediction of Incident Atherosclerotic Cardiovascular Disease. Circulation Cardiovasc Imaging 15(3):e013602

Google Scholar 

Huang Z, Cheng XQ, Liu HY, Bi XJ, Liu YN, Lv WZ, Xiong L, Deng YB (2022) Relation of carotid plaque features detected with Ultrasonography-based radiomics to clinical symptoms. Transl Stroke Res 13(6):970–982

Article  PubMed  Google Scholar 

Huang Z, Cheng XQ, Lu RR, Gao YP, Lv WZ, Liu K, Liu YN, Xiong L, Bi XJ, Deng YB (2024) A Radiomics-based Nomogram using Ultrasound Carotid Plaque evaluation for Predicting Cerebro-Cardiovascular events in asymptomatic patients. Acad Radiol. 2024 Jun 21:S1076-6332(24)00334-9

Liu Y, Kong Y, Yan Y, Hui P (2024) Explore the value of carotid ultrasound radiomics nomogram in predicting ischemic stroke risk in patients with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 15:1357580

Article  PubMed  Google Scholar 

Austin DE, Lee DS, Wang CX, Ma S, Wang X, Porter J, Wang B (2022) Comparison of machine learning and the regression-based EHMRG model for predicting early mortality in acute heart failure. Int J Cardiol 365:78–84

Article  PubMed  Google Scholar 

Hou C, Li S, Zheng S, Liu LP, Nie F, Zhang W, He W (2024) Quality assessment of radiomics models in carotid plaque: a systematic review. Quant Imaging Med Surg 14(1):1141–1154

Article  PubMed  Google Scholar 

van der Reijd DJ, Chupetlovska K, van Dijk E, Westerink B, Monraats MA, Van Griethuysen JJM, Lambregts DMJ, Tissier R, Beets-Tan RGH, Benson S et al (2024) Multi-sequence MRI radiomics of colorectal liver metastases: which features are reproducible across readers? Eur J Radiol 172:111346

Article  PubMed  Google Scholar 

Ubaldi L, Valenti V, Borgese RF, Collura G, Fantacci ME, Ferrera G, Iacoviello G, Abbate BF, Laruina F, Tripoli A et al (2021) Strategies to develop radiomics and machine learning models for lung cancer stage and histology prediction using small data samples. Phys Medica: PM: Int J Devoted Appl Phys Med Biology: Official J Italian Association Biomedical Phys (AIFB) 90:13–22

CAS  Google Scholar 

Li H, Zhang J, Guo Q, Xie W, Zhan X, Chen Q, Xie X, Sun R, Cao Z, Jiang Y et al (2023) Associations among carotid plaque progression, cerebrovascular/cardiovascular diseases and LDL-C/non-HDL-C goal achievement in diabetic patients: a retrospective cohort study. J Diabetes Complications 37(1):108381

Article  PubMed  CAS  Google Scholar 

Cademartiri F, Balestrieri A, Cau R, Punzo B, Cavaliere C, Maffei E, Saba L (2020) Insight from imaging on plaque vulnerability: similarities and differences between coronary and carotid arteries-implications for systemic therapies. Cardiovasc Diagnosis Therapy 10(4):1150–1162

Article  Google Scholar 

Zhang R, Zhang Q, Ji A, Lv P, Zhang J, Fu C, Lin J (2021) Identification of high-risk carotid plaque with MRI-based radiomics and machine learning. Eur Radiol 31(5):3116–3126

Article  PubMed  Google Scholar 

Squire KJ, Zhao Y, Tan A, Sivashanmugan K, Kraai JA, Rorrer GL, Wang AX (2019) Photonic crystal-enhanced fluorescence imaging immunoassay for Cardiovascular Disease Biomarker Screening with Machine Learning Analysis. Sens Actuators B Chem 290:118–124

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bano A, Chaker L, Mattace-Raso FUS, van der Lugt A, Ikram MA, Franco OH, Peeters RP, Kavousi M (2017) Thyroid function and the risk of atherosclerotic Cardiovascular morbidity and mortality: the Rotterdam Study. Circul Res 121(12):1392–1400

Article  CAS  Google Scholar 

Du J, Zhao X, Xu X, Zhang Z, Zhang X (2023) Association between thyroid parameters and subclinical atherosclerosis in Hospitalised Euthyroid patients with type 2 diabetes Mellitus. Diabetes Metabolic Syndrome Obesity: Targets Therapy 16:3163–3171

Article  PubMed  CAS  Google Scholar 

Florido R, Daya NR, Ndumele CE, Koton S, Russell SD, Prizment A, Blumenthal RS, Matsushita K, Mok Y, Felix AS et al (2022) Cardiovascular Disease Risk among Cancer survivors: the Atherosclerosis Risk in communities (ARIC) Study. J Am Coll Cardiol 80(1):22–32

Article  PubMed  PubMed Central  Google Scholar 

Joki N, Toida T, Nakata K, Abe M, Hanafusa N, Kurita N (2024) Effect of atherosclerosis on the relationship between atrial fibrillation and ischemic stroke incidence among patients on hemodialysis. Sci Rep 14(1):1330

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tektonidou MG (2022) Cardiovascular disease risk in antiphospholipid syndrome: Thrombo-inflammation and atherothrombosis. J Autoimmun 128:102813

Article  PubMed  CAS  Google Scholar 

Whelton PK, Carey RM, Aronow WS, Casey DE Jr., Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW et al (2017) ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018, 71(6):1269–1324

Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M et al (2012) 3D slicer as an image computing platform for the quantitative Imaging Network. Magn Reson Imaging 30(9):1323–1341

Article  PubMed  PubMed Central  Google Scholar 

van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts H (2017) Computational Radiomics System to Decode the Radiographic phenotype. Cancer Res 77(21):e104–e107

Article  PubMed  PubMed Central  Google Scholar 

Gamer M, Lemon J, Singh I (2010) irr: Various Coefficients of Interrater Reliability and Agreement

Linde JJ, Kelbaek H, Hansen TF, Sigvardsen PE, Torp-Pedersen C, Bech J, Heitmann M, Nielsen OW, Hofsten D, Kuhl JT et al (2020) Coronary CT angiography in patients with Non-ST-Segment elevation Acute Coronary Syndrome. J Am Coll Cardiol 75(5):453–463

Article  PubMed  Google Scholar 

Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJ, Culebras A, Elkind MS, George MG, Hamdan AD, Higashida RT et al (2013) An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44(7):2064–2089

Article  PubMed  PubMed Central  Google Scholar 

Bomhals B, Cossement L, Maes A, Sathekge M, Mokoala KMG, Sathekge C, Ghysen K, Van de Wiele C (2023) Principal component analysis Applied to Radiomics Data: added value for separating Benign from Malignant Solitary Pulmonary nodules. J Clin Med 12(24)

Gordon SM, Chung JH, Playford MP, Dey AK, Sviridov D, Seifuddin F, Chen YC, Pirooznia M, Chen MY, Mehta NN et al (2018) High density lipoprotein proteome is associated with cardiovascular risk factors and atherosclerosis burden as evaluated by coronary CT angiography. Atherosclerosis 278:278–285

Article  PubMed  PubMed Central  CAS  Google Scholar 

Akarachantachote N, Chadcham S, Saithanu K (2014) Cutoff threshold of variable importance in projection for variable selection. Int J Pure Apllied Math 94. https://doi.org/10.12732/ijpam.v94i3.2

Ugoni A, Walker B (1995) THE t TEST: An Introduction. 4

McKnight PE, Najab J Mann-Whitney U Test. In: The Corsini Encyclopedia of Psychology. 1–1

Ghasemi A, Zahediasl S (2012) Normality tests for statistical analysis: a guide for non-statisticians. Int J Endocrinol Metabolism 10(2):486–489

Article  Google Scholar 

Awosan K (2023) Introduction to Chi square test

BS SL (2004) E: A handbook of statistical analysis using SPSS. Chapman and Hall/CRC

Team RC (2024) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing Vienna(Austria)

Wang X, Luo P, Du H, Li S, Wang Y, Guo X, Wan L, Zhao B, Ren J (2022) Ultrasound Radiomics Nomogram Integrating three-dimensional features based on carotid plaques to evaluate coronary artery disease. Diagnostics (Basel) 12(2)

Prati P, Tosetto A, Casaroli M, Bignamini A, Canciani L, Bornstein N, Prati G, Touboul PJ (2011) Carotid plaque morphology improves stroke risk prediction: usefulness of a new ultrasonographic score. Cerebrovasc Dis 31(3):300–304

留言 (0)

沒有登入
gif