Cratylia mollis lectin reduces inflammatory burden induced by multidrug-resistant Staphylococcus aureus in diabetic wounds

Albuquerque PBS, Soares PAG, Aragão-Neto AC et al (2017) Healing activity evaluation of the galactomannan film obtained from Cassia grandis seeds with immobilized Cratylia mollis seed lectin. Int J Biol Macromol 102:749–757. https://doi.org/10.1016/J.IJBIOMAC.2017.04.064

Article  CAS  PubMed  Google Scholar 

Andrade CAS, Correia MTS, Coelho LCBB et al (2004) Antitumor activity of Cratylia mollis lectin encapsulated into liposomes. Int J Pharm 278:435–445. https://doi.org/10.1016/J.IJPHARM.2004.03.028

Article  CAS  PubMed  Google Scholar 

Baidoo N, Sanger GJ, Belai A (2023) Histochemical and biochemical analysis of collagen content in formalin-fixed, paraffin embedded colonic samples. MethodsX. https://doi.org/10.1016/J.MEX.2023.102416

Article  PubMed  PubMed Central  Google Scholar 

Barman PK, Koh TJ (2020) Macrophage dysregulation and impaired skin wound healing in diabetes. Front Cell Dev Biol. https://doi.org/10.3389/FCELL.2020.00528

Article  PubMed  PubMed Central  Google Scholar 

Beserra FP, Xue M, De Azevedo Maia GL et al (2018) Lupeol, a pentacyclic triterpene, promotes migration, wound closure, and contractile effect in vitro: possible involvement of PI3K/Akt and p38/ERK/MAPK pathways. Molecules. https://doi.org/10.3390/MOLECULES23112819

Article  Google Scholar 

Cheung GYC, Bae JS, Otto M (2021) Pathogenicity and virulence of Staphylococcus aureus. Virulence 12:547–569. https://doi.org/10.1080/21505594.2021.1878688

Article  CAS  PubMed  PubMed Central  Google Scholar 

Correia MTS, Coelho LCBB (1995) Purification of a glucose/mannose specific lectin, isoform 1, from seeds of Cratylia mollis Mart. (Camaratu bean). Appl Biochem Biotechnol 55:261–273. https://doi.org/10.1007/BF02786865

Article  CAS  PubMed  Google Scholar 

Da Silva LCN, Alves NMP, De Castro MCAB et al (2015) pCramoll and rCramoll as new preventive agents against the oxidative dysfunction induced by hydrogen peroxide. Oxid Med Cell Longev. https://doi.org/10.1155/2015/520872

Article  PubMed  PubMed Central  Google Scholar 

De Melo CML, De Castro MCAB, De Oliveira AP et al (2010) Immunomodulatory response of Cramoll 1,4 lectin on experimental lymphocytes. Phytother Res 24:1631–1636. https://doi.org/10.1002/PTR.3156

Article  PubMed  Google Scholar 

De Melo CML, Melo H, Correia MTS et al (2011) Mitogenic response and cytokine production induced by cramoll 1,4 lectin in splenocytes of inoculated mice. Scand J Immunol 73:112–121. https://doi.org/10.1111/J.1365-3083.2010.02490.X

Article  CAS  PubMed  Google Scholar 

Melo CML de, Lima ALR de, Beltrão EIC et al (2011a) Potential effects of Cramoll 1,4 lectin on murine Schistosomiasis mansoni. Acta Trop 118:152–158. https://doi.org/10.1016/J.ACTATROPICA.2011.01.008

Article  PubMed  Google Scholar 

Melo CML de, Porto CS, Melo MR et al (2011b) Healing activity induced by Cramoll 1,4 lectin in healthy and immunocompromised mice. Int J Pharm 408:113–119. https://doi.org/10.1016/J.IJPHARM.2011.02.011

Article  PubMed  Google Scholar 

De Oliveira PSS, Rêgo MJBDM, Da Silva RR et al (2013) Cratylia mollis 1, 4 lectin: a new biotechnological tool in IL-6, IL-17A, IL-22, and IL-23 induction and generation of immunological memory. Biomed Res Int. https://doi.org/10.1155/2013/263968

Article  Google Scholar 

de Andrade FM, Neves FPA, de Albuquerque PBS et al (2021) Healing activities of Cramoll and xyloglucan membrane in cutaneous wounds of diabetic mice. J Immunol Regen Med 13:100045. https://doi.org/10.1016/J.REGEN.2021.100045

Article  Google Scholar 

de Macedo GHRV, Costa GDE, Oliveira ER et al (2021) Interplay between ESKAPE pathogens and immunity in skin infections: an overview of the major determinants of virulence and antibiotic resistance. Pathogens 10:1–34. https://doi.org/10.3390/PATHOGENS10020148

Article  Google Scholar 

Deng L, Du C, Song P et al (2021) The role of oxidative stress and antioxidants in diabetic wound healing. Oxid Med Cell Longev. https://doi.org/10.1155/2021/8852759

Article  PubMed  PubMed Central  Google Scholar 

Deng Z, Fan T, Xiao C et al (2024) TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther. https://doi.org/10.1038/S41392-024-01764-W

Article  PubMed  PubMed Central  Google Scholar 

Escuin-Ordinas H, Li S, Xie MW et al (2016) Cutaneous wound healing through paradoxical MAPK activation by BRAF inhibitors. Nat Commun 7:12348. https://doi.org/10.1038/NCOMMS12348

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferreira RM, dos Santos Silva DH, Silva KF et al (2023) Draft genome sequence of Staphylococcus aureus sequence type 5 SA01 isolated from bloodstream infection and comparative analysis with reference strains. Funct Integr Genom. https://doi.org/10.1007/S10142-023-01204-Y

Article  Google Scholar 

Ferro TAF, Souza EB, Suarez MAM et al (2019) Topical application of cinnamaldehyde promotes faster healing of skin wounds infected with Pseudomonas aeruginosa. Molecules 24(1624):1627. https://doi.org/10.3390/MOLECULES24081627

Article  CAS  PubMed  PubMed Central  Google Scholar 

Furman BL (2021) Streptozotocin-induced diabetic models in mice and rats. Curr Protoc. https://doi.org/10.1002/CPZ1.78

Article  PubMed  Google Scholar 

Goyal SN, Reddy NM, Patil KR et al (2016) Challenges and issues with streptozotocin-induced diabetes—a clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem Biol Interact 244:49–63. https://doi.org/10.1016/J.CBI.2015.11.032

Article  CAS  PubMed  Google Scholar 

Guo Y, Song G, Sun M et al (2020) Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front Cell Infect Microbiol. https://doi.org/10.3389/FCIMB.2020.00107

Article  PubMed  PubMed Central  Google Scholar 

Jandú JJ, Costa MC, Santos JRA et al (2017) Treatment with pCramoll alone and in combination with fluconazole provides therapeutic benefits in C. gattii infected mice. Front Cell Infect Microbiol. https://doi.org/10.3389/FCIMB.2017.00211

Article  PubMed  PubMed Central  Google Scholar 

Kim EK, Choi EJ (2015) Compromised MAPK signaling in human diseases: an update. Arch Toxicol 89:867–882. https://doi.org/10.1007/S00204-015-1472-2/FIGURES/2

Article  CAS  PubMed  Google Scholar 

Maciel EVM, Araújo-Filho VS, Nakazawa M et al (2004) Mitogenic activity of Cratylia mollis lectin on human lymphocytes. Biologicals 32:57–60. https://doi.org/10.1016/J.BIOLOGICALS.2003.12.001

Article  CAS  PubMed  Google Scholar 

Nakhate VP, Akojwar NS, Sinha SK et al (2023) Wound healing potential of Acacia catechu in streptozotocin-induced diabetic mice using in vivo and in silico approach. J Tradit Complement Med 13:489–499. https://doi.org/10.1016/J.JTCME.2023.05.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nunes MAS, dos Silva L, S, Santos DM, et al (2022) Schinus terebinthifolius leaf lectin (SteLL) reduces the bacterial and inflammatory burden of wounds infected by staphylococcus aureus promoting skin repair. Pharmaceuticals (Basel). https://doi.org/10.3390/PH15111441

Article  PubMed  PubMed Central  Google Scholar 

Patel S, Srivastava S, Singh MR, Singh D (2019) Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother. https://doi.org/10.1016/J.BIOPHA.2019.108615

Article  PubMed  Google Scholar 

Peña OA, Martin P (2024) Cellular and molecular mechanisms of skin wound healing. Nat Rev Mol Cell Biol 25:599–616. https://doi.org/10.1038/s41580-024-00715-1

Article  CAS 

留言 (0)

沒有登入
gif