Albuquerque PBS, Soares PAG, Aragão-Neto AC et al (2017) Healing activity evaluation of the galactomannan film obtained from Cassia grandis seeds with immobilized Cratylia mollis seed lectin. Int J Biol Macromol 102:749–757. https://doi.org/10.1016/J.IJBIOMAC.2017.04.064
Article CAS PubMed Google Scholar
Andrade CAS, Correia MTS, Coelho LCBB et al (2004) Antitumor activity of Cratylia mollis lectin encapsulated into liposomes. Int J Pharm 278:435–445. https://doi.org/10.1016/J.IJPHARM.2004.03.028
Article CAS PubMed Google Scholar
Baidoo N, Sanger GJ, Belai A (2023) Histochemical and biochemical analysis of collagen content in formalin-fixed, paraffin embedded colonic samples. MethodsX. https://doi.org/10.1016/J.MEX.2023.102416
Article PubMed PubMed Central Google Scholar
Barman PK, Koh TJ (2020) Macrophage dysregulation and impaired skin wound healing in diabetes. Front Cell Dev Biol. https://doi.org/10.3389/FCELL.2020.00528
Article PubMed PubMed Central Google Scholar
Beserra FP, Xue M, De Azevedo Maia GL et al (2018) Lupeol, a pentacyclic triterpene, promotes migration, wound closure, and contractile effect in vitro: possible involvement of PI3K/Akt and p38/ERK/MAPK pathways. Molecules. https://doi.org/10.3390/MOLECULES23112819
Cheung GYC, Bae JS, Otto M (2021) Pathogenicity and virulence of Staphylococcus aureus. Virulence 12:547–569. https://doi.org/10.1080/21505594.2021.1878688
Article CAS PubMed PubMed Central Google Scholar
Correia MTS, Coelho LCBB (1995) Purification of a glucose/mannose specific lectin, isoform 1, from seeds of Cratylia mollis Mart. (Camaratu bean). Appl Biochem Biotechnol 55:261–273. https://doi.org/10.1007/BF02786865
Article CAS PubMed Google Scholar
Da Silva LCN, Alves NMP, De Castro MCAB et al (2015) pCramoll and rCramoll as new preventive agents against the oxidative dysfunction induced by hydrogen peroxide. Oxid Med Cell Longev. https://doi.org/10.1155/2015/520872
Article PubMed PubMed Central Google Scholar
De Melo CML, De Castro MCAB, De Oliveira AP et al (2010) Immunomodulatory response of Cramoll 1,4 lectin on experimental lymphocytes. Phytother Res 24:1631–1636. https://doi.org/10.1002/PTR.3156
De Melo CML, Melo H, Correia MTS et al (2011) Mitogenic response and cytokine production induced by cramoll 1,4 lectin in splenocytes of inoculated mice. Scand J Immunol 73:112–121. https://doi.org/10.1111/J.1365-3083.2010.02490.X
Article CAS PubMed Google Scholar
Melo CML de, Lima ALR de, Beltrão EIC et al (2011a) Potential effects of Cramoll 1,4 lectin on murine Schistosomiasis mansoni. Acta Trop 118:152–158. https://doi.org/10.1016/J.ACTATROPICA.2011.01.008
Melo CML de, Porto CS, Melo MR et al (2011b) Healing activity induced by Cramoll 1,4 lectin in healthy and immunocompromised mice. Int J Pharm 408:113–119. https://doi.org/10.1016/J.IJPHARM.2011.02.011
De Oliveira PSS, Rêgo MJBDM, Da Silva RR et al (2013) Cratylia mollis 1, 4 lectin: a new biotechnological tool in IL-6, IL-17A, IL-22, and IL-23 induction and generation of immunological memory. Biomed Res Int. https://doi.org/10.1155/2013/263968
de Andrade FM, Neves FPA, de Albuquerque PBS et al (2021) Healing activities of Cramoll and xyloglucan membrane in cutaneous wounds of diabetic mice. J Immunol Regen Med 13:100045. https://doi.org/10.1016/J.REGEN.2021.100045
de Macedo GHRV, Costa GDE, Oliveira ER et al (2021) Interplay between ESKAPE pathogens and immunity in skin infections: an overview of the major determinants of virulence and antibiotic resistance. Pathogens 10:1–34. https://doi.org/10.3390/PATHOGENS10020148
Deng L, Du C, Song P et al (2021) The role of oxidative stress and antioxidants in diabetic wound healing. Oxid Med Cell Longev. https://doi.org/10.1155/2021/8852759
Article PubMed PubMed Central Google Scholar
Deng Z, Fan T, Xiao C et al (2024) TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther. https://doi.org/10.1038/S41392-024-01764-W
Article PubMed PubMed Central Google Scholar
Escuin-Ordinas H, Li S, Xie MW et al (2016) Cutaneous wound healing through paradoxical MAPK activation by BRAF inhibitors. Nat Commun 7:12348. https://doi.org/10.1038/NCOMMS12348
Article CAS PubMed PubMed Central Google Scholar
Ferreira RM, dos Santos Silva DH, Silva KF et al (2023) Draft genome sequence of Staphylococcus aureus sequence type 5 SA01 isolated from bloodstream infection and comparative analysis with reference strains. Funct Integr Genom. https://doi.org/10.1007/S10142-023-01204-Y
Ferro TAF, Souza EB, Suarez MAM et al (2019) Topical application of cinnamaldehyde promotes faster healing of skin wounds infected with Pseudomonas aeruginosa. Molecules 24(1624):1627. https://doi.org/10.3390/MOLECULES24081627
Article CAS PubMed PubMed Central Google Scholar
Furman BL (2021) Streptozotocin-induced diabetic models in mice and rats. Curr Protoc. https://doi.org/10.1002/CPZ1.78
Goyal SN, Reddy NM, Patil KR et al (2016) Challenges and issues with streptozotocin-induced diabetes—a clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem Biol Interact 244:49–63. https://doi.org/10.1016/J.CBI.2015.11.032
Article CAS PubMed Google Scholar
Guo Y, Song G, Sun M et al (2020) Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front Cell Infect Microbiol. https://doi.org/10.3389/FCIMB.2020.00107
Article PubMed PubMed Central Google Scholar
Jandú JJ, Costa MC, Santos JRA et al (2017) Treatment with pCramoll alone and in combination with fluconazole provides therapeutic benefits in C. gattii infected mice. Front Cell Infect Microbiol. https://doi.org/10.3389/FCIMB.2017.00211
Article PubMed PubMed Central Google Scholar
Kim EK, Choi EJ (2015) Compromised MAPK signaling in human diseases: an update. Arch Toxicol 89:867–882. https://doi.org/10.1007/S00204-015-1472-2/FIGURES/2
Article CAS PubMed Google Scholar
Maciel EVM, Araújo-Filho VS, Nakazawa M et al (2004) Mitogenic activity of Cratylia mollis lectin on human lymphocytes. Biologicals 32:57–60. https://doi.org/10.1016/J.BIOLOGICALS.2003.12.001
Article CAS PubMed Google Scholar
Nakhate VP, Akojwar NS, Sinha SK et al (2023) Wound healing potential of Acacia catechu in streptozotocin-induced diabetic mice using in vivo and in silico approach. J Tradit Complement Med 13:489–499. https://doi.org/10.1016/J.JTCME.2023.05.001
Article CAS PubMed PubMed Central Google Scholar
Nunes MAS, dos Silva L, S, Santos DM, et al (2022) Schinus terebinthifolius leaf lectin (SteLL) reduces the bacterial and inflammatory burden of wounds infected by staphylococcus aureus promoting skin repair. Pharmaceuticals (Basel). https://doi.org/10.3390/PH15111441
Article PubMed PubMed Central Google Scholar
Patel S, Srivastava S, Singh MR, Singh D (2019) Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother. https://doi.org/10.1016/J.BIOPHA.2019.108615
Peña OA, Martin P (2024) Cellular and molecular mechanisms of skin wound healing. Nat Rev Mol Cell Biol 25:599–616. https://doi.org/10.1038/s41580-024-00715-1
留言 (0)