Infraslow noradrenergic locus coeruleus activity fluctuations are gatekeepers of the NREM–REM sleep cycle

Poe, G. R. et al. Locus coeruleus: a new look at the blue spot. Nat. Rev. Neurosci. 21, 644–659 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berridge, C. W. Noradrenergic modulation of arousal. Brain Res. Rev. 58, 1–17 (2008).

Article  CAS  PubMed  Google Scholar 

Sara, S. J. & Bouret, S. Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron 76, 130–141 (2012).

Article  CAS  PubMed  Google Scholar 

Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev. Neurosci. 28, 403–450 (2005).

Article  CAS  PubMed  Google Scholar 

Osorio-Forero, A., Cherrad, N., Banterle, L., Fernandez, L. M. J. & Lüthi, A.When the locus coeruleus speaks up in sleep: recent insights, emerging perspectives. Int. J. Mol. Sci. 23, 5028 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morris, L. S., McCall, J. G., Charney, D. S. & Murrough, J. W. The role of the locus coeruleus in the generation of pathological anxiety. Brain Neurosci. Adv. 4, 2398212820930321 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Yu, X., Franks, N. P. & Wisden, W. Sleep and sedative states induced by targeting the histamine and noradrenergic systems. Front. Neural Circuits 12, 4 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Carter, M. E. et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. 13, 1526–1533 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hayat, H. et al. Locus coeruleus norepinephrine activity mediates sensory-evoked awakenings from sleep. Sci. Adv. 6, eaaz4232 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Osorio-Forero, A. et al. Noradrenergic circuit control of non-REM sleep substates. Curr. Biol. 31, 5009–5023 (2021).

Article  CAS  PubMed  Google Scholar 

Kjaerby, C. et al. Memory-enhancing properties of sleep depend on the oscillatory amplitude of norepinephrine. Nat. Neurosci. 25, 1059–1070 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Antila, H. et al. A noradrenergic–hypothalamic neural substrate for stress-induced sleep disturbances. Proc. Natl Acad. Sci. USA 119, e2123528119 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fernandez, L. M. J. & Lüthi, A. Sleep spindles: mechanisms and functions. Physiol. Rev. 100, 805–868 (2020).

Article  PubMed  Google Scholar 

Cardis, R. et al. Local cortical arousals and heightened (somato)sensory arousability during non-REM sleep of mice in chronic pain. eLife 10, e65835 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lecci, S. et al. Coordinated infra-slow neural and cardiac oscillations mark fragility and offline periods in mammalian sleep. Sci. Adv. 3, e1602026 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Halász, P., Terzano, M., Parrino, L. & Bodizs, R. The nature of arousal in sleep. J. Sleep. Res 13, 1–23 (2004).

Article  PubMed  Google Scholar 

McCarley, R. W. & Hobson, J. A. Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science 189, 58–60 (1975).

Article  CAS  PubMed  Google Scholar 

Brown, R. E., Basheer, R., McKenna, J. T., Strecker, R. E. & McCarley, R. W. Control of sleep and wakefulness. Physiol. Rev. 92, 1087–1187 (2012).

Article  CAS  PubMed  Google Scholar 

Koshmanova, E. et al. Locus coeruleus activity while awake is associated with REM sleep quality in healthy older individuals. JCI Insight 8, e172008 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Cabrera, Y. et al. Overnight neuronal plasticity and adaptation to emotional distress. Nat. Rev. Neurosci. 25, 253–271 (2024).

Article  CAS  PubMed  Google Scholar 

Zhang, Y. et al. Fast and sensitive GCaMP calcium indicators for imaging neural populations. Nature 615, 884–891 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franken, P., Malafosse, A. & Tafti, M. Genetic determinants of sleep regulation in inbred mice. Sleep 22, 155–169 (1999).

CAS  PubMed  Google Scholar 

Feng, J. et al. A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron 102, 745–761 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benington, J. H. & Heller, H. C. REM-sleep timing is controlled homeostatically by accumulation of REM-sleep propensity in non-REM sleep. Am. J. Physiol. 266, R1992–R2000 (1994).

CAS  PubMed  Google Scholar 

Franken, P. Long-term vs. short-term processes regulating REM sleep. J. Sleep. Res 11, 17–28 (2002).

Article  PubMed  Google Scholar 

Park, S. H. & Weber, F. Neural and homeostatic regulation of REM sleep. Front. Psychol. 11, 1662 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Park, S. H. et al. A probabilistic model for the ultradian timing of REM sleep in mice. PLoS Comput. Biol. 17, e1009316 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benington, J. H., Woudenberg, M. C. & Heller, H. C. REM-sleep propensity accumulates during 2-h REM-sleep deprivation in the rest period in rats. Neurosci. Lett. 180, 76–80 (1994).

Article  CAS  PubMed  Google Scholar 

Kopp, C., Longordo, F., Nicholson, J. R. & Lüthi, A. Insufficient sleep reversibly alters bidirectional synaptic plasticity and NMDA receptor function. J. Neurosci. 26, 12456–12465 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brodt, S., Inostroza, M., Niethard, N. & Born, J. Sleep—a brain-state serving systems memory consolidation. Neuron 111, 1050–1075 (2023).

Article  CAS  PubMed  Google Scholar 

Hobson, J. A., McCarley, R. W. & Wyzinski, P. W. Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189, 55–58 (1975).

Article  CAS  PubMed  Google Scholar 

Hong, J., Lozano, D. E., Beier, K. T., Chung, S. & Weber, F.Prefrontal cortical regulation of REM sleep. Nat. Neurosci. 26, 1820–1832 (2023).

留言 (0)

沒有登入
gif