Porin expression in clinical isolates of Klebsiella pneumoniae: a comparison of SDS-PAGE and MALDI-TOF/MS and limitations of whole genome sequencing analysis

Paczosa MK, Mecsas J. Klebsiella pneumoniae: Going on the Offense with a Strong Defense. Microbiol Mol Biol Rev. 2016;80(3):629–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eichenberger EM, Thaden JT. Epidemiology and mechanisms of resistance of extensively drug resistant gram-negative bacteria. Volume 8. Antibiotics: MDPI AG; 2019.

Google Scholar 

Karakonstantis S, Kritsotakis EI, Gikas A. Pandrug-resistant gram-negative bacteria: A systematic review of current epidemiology, prognosis and treatment options. Journal of Antimicrobial Chemotherapy. Volume 75. Oxford University Press; 2020. pp. 271–82.

Nikaido H. Molecular Basis of Bacterial Outer Membrane Permeability Revisited. Microbiol Mol Biol Rev. 2003;67(4):593–656.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abellón-Ruiz J, Kaptan SS, Baslé A, Claudi B, Bumann D, Kleinekathöfer U, et al. Structural basis for maintenance of bacterial outer membrane lipid asymmetry. Nat Microbiol. 2017;2(12):1616–23.

Article  PubMed  Google Scholar 

Acosta-Gutiérrez S, Ferrara L, Pathania M, Masi M, Wang J, Bodrenko I, et al. Supporting Information Getting drugs into Gram-negative bacteria: Rational rules for permeation through general porins. ACS Infect Dis. 2018;4(10):1487–98.

Article  PubMed  Google Scholar 

Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science. 1994;264(5157):382–8.

Article  CAS  PubMed  Google Scholar 

García-Sureda L, Doménech-Sánchez A, Barbier M, Juan C, Gascó J, Albertí S. OmpK26, a novel porin associated with carbapenem resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2011;55(10):4742–7.

Article  PubMed  PubMed Central  Google Scholar 

Doménech-Sánchez A, Hernández-Allés S, Martínez-Martínez L, Benedí VJ, Albertí S. Identification and characterization of a new porin gene of Klebsiella pneumoniae: its role in beta-lactam antibiotic resistance. J Bacteriol. 1999;181(9):2726–32.

Article  PubMed  PubMed Central  Google Scholar 

Zgurskaya HI, Löpez CA, Gnanakaran S. Permeability Barrier of Gram-Negative Cell Envelopes and Approaches to Bypass It. ACS Infect Dis. 2015;1(11):512–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol. 2010;2(5):a000414.

Article  PubMed  PubMed Central  Google Scholar 

Vergalli J, Bodrenko IV, Masi M, Moynié L, Acosta-Gutiérrez S, Naismith JH, et al. Porins and small-molecule translocation across the outer membrane of Gram-negative bacteria. Volume 18. Nature Reviews Microbiology. Nature Research; 2020. pp. 164–76.

De la Cruz MA, Calva E. The complexities of porin genetic regulation. J Mol Microbiol Biotechnol. 2010;18(1):24–36.

PubMed  Google Scholar 

Biró I, Pezeshki S, Weingart H, Winterhalter M, Kleinekathöfer U. Comparing the temperature-dependent conductance of the two structurally similar E. coli porins OmpC and OmpF. Biophys J. 2010;98(9):1830–9.

Article  PubMed  PubMed Central  Google Scholar 

Martínez-Martínez L. Extended-spectrum β-lactamases and the permeability barrier. Clinical Microbiology and Infection. Volume 14. Blackwell Publishing Ltd; 2008. pp. 82–9.

Tyson GH, McDermott PF, Li C, Chen Y, Tadesse DA, Mukherjee S, et al. WGS accurately predicts antimicrobial resistance in Escherichia coli. J Antimicrob Chemother. 2015;70(10):2763–9.

Article  CAS  PubMed  Google Scholar 

Vanstokstraeten R, Piérard D, Crombé F, De Geyter D, Wybo I, Muyldermans A et al. Genotypic resistance determined by whole genome sequencing versus phenotypic resistance in 234 Escherichia coli isolates. Sci Rep. 2023;13(1).

Biggel M, Johler S, Roloff T, Tschudin-Sutter S, Bassetti S, Siegemund M et al. Porin Predict: In Silico Identification of OprD Loss from WGS Data for Improved Genotype-Phenotype Predictions of P. aeruginosa Carbapenem Resistance. Microbiol Spectr. 2023;11(2).

Croxatto A, Prod’hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev. 2012;36:380–407.

Article  CAS  PubMed  Google Scholar 

Gato E, Anantharajah A, Arroyo MJ, Artacho MJ, Caballero J, de Candela D. A, Multicenter Performance Evaluation of MALDI-TOF MS for Rapid Detection of Carbapenemase Activity in Enterobacterales: The Future of Networking Data Analysis With Online Software. Front Microbiol. 2022;12.

Aros-Calt S, Castelli FA, Lamourette P, Gervasi G, Junot C, Muller BH, Fenaille F. Metabolomic Investigation of Staphylococcus aureus Antibiotic Susceptibility by Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Methods Mol Biol. 2019;1871:279–93.

Article  CAS  PubMed  Google Scholar 

CLSI supplement M100. Clinical and Laboratory Standards Institute. 2021.

The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. (Version_13.0). 2023.

Matsuyama SI, Inokuchi K, Mizushima S. Promoter exchange between ompF and ompC, genes for osmoregulated major outer membrane proteins of Escherichia coli K-12. J Bacteriol. 1984;158(3):1041–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vicente BJ, Luis MM. Outer Membrane Profiles of Clonally Related Klebsiella pneumoniae. Methods Mol Med. 2001;48:189–97.

CAS  PubMed  Google Scholar 

Carlone GM, Thomas ML, Rumschlag HS, Sottnek FO. Rapid microprocedure for isolating detergent-insoluble outer membrane proteins from Haemophilus species. J Clin Microbiol. 1986;24(3):330–2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai JC, Hu YY, Zhang R, Zhou HW, Chen GX. Detection of OmpK36 porin loss in Klebsiella spp. by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2012;50(6):2179–82.

Article  PubMed  PubMed Central  Google Scholar 

David S, Wong JLC, Sanchez-Garrido J, Kwong HS, Low WW, Morecchiato F et al. Widespread emergence of OmpK36 loop 3 insertions among multidrug-resistant clones of Klebsiella pneumoniae. PLoS Pathog. 2022;18(7 July).

Clancy CJ, Chen L, Hong JH, Cheng S, Hao B, Shields RK, et al. Mutations of the ompK36 porin gene and promoter impact responses of sequence Type 258, KPC-2-producing Klebsiella pneumoniae strains to doripenem and doripenem-colistin. Antimicrob Agents Chemother. 2013;57(11):5258–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sho T, Muratani T, Hamasuna R, Yakushiji H, Fujimoto N, Matsumoto T. The mechanism of high-level carbapenem resistance in Klebsiella pneumoniae: underlying Ompk36-deficient strains represent a threat of emerging high-level carbapenem-resistant K. pneumoniae with IMP-1 β-lactamase production in Japan. Microb Drug Resist. 2013;19(4):274–81.

Article  CAS  PubMed  Google Scholar 

Doménech-Sánchez A, Martínez-Martínez L, Hernández-Allés S, Conejo M del, Pascual C, Tomás Á. Role of Klebsiella pneumoniae OmpK35 porin in antimicrobial resistance. Antimicrob Agents Chemother. 2003;47(10):3332–5.

Article  PubMed  PubMed Central  Google Scholar 

Hernández-Allés S, Albertí S, Álvarez D, Doménech-Sánchez A, Martínez-Martínez L, Gil J, Tomás JM, Benedí VJ. Porin expression in clinical isolates of Klebsiella pneumoniae. Microbiol (Reading). 1999;145(Pt 3):673–9.

Article  Google Scholar 

Oviaño M, Bou G. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for the Rapid Detection of Antimicrobial Resistance Mechanisms and Beyond. Clin Microbiol Rev. 2019;32(1).

Pinto NA, D’Souza R, Hwang IS, Choi J, In YH, Park HS, et al. Whole genome and transcriptome analysis reveal MALDI-TOF MS and SDS-PAGE have limited performance for the detection of the key outer membrane protein in carbapenem-resistant Klebsiella pneumoniae isolates. Oncotarget. 2017;8(49):84818–26.

Article  PubMed  PubMed Central  Google Scholar 

Figueroa-Espinosa R, Costa A, Cejas D, Barrios R, Vay C, Radice M, et al. MALDI-TOF MS based procedure to detect KPC-2 directly from positive blood culture bottles and colonies. J Microbiol Methods. 2019;159:120–7.

Article  CAS  PubMed  Google Scholar 

Yoon EJ, Lee EH, Hwang DH, Lee H, Baek JH, Jeong SH. Direct detection of intact Klebsiella pneumoniae carbapenemases produced by Enterobacterales using MALDI-TOF MS. J Antimicrob Chemother. 2020;75(5):1174–81.

Article  CAS  PubMed  Google Scholar 

Lumbreras-Iglesias P, Rodicio MR, Valledor P, Suárez-Zarracina T, Fernández J. High-Level Carbapenem Resistance among OXA-48-Producing Klebsiella pneumoniae with Functional OmpK36 Alterations: Maintenance of Ceftazidime/Avibactam Susceptibility. Antibiot (Basel). 2021;10(10).

Xu Q, Sheng Z, Hao M, Jiang J, Ye M, Chen Y, et al. RamA upregulates multidrug resistance efflux pumps AcrAB and OqxAB in Klebsiella pneumoniae. Int J Antimicrob Agents. 2021;57(2):106251.

Article  CAS  PubMed  Google Scholar 

Guzmán-Puche J, Pérez-Nadales E, Pérez-Vázquez M, Causse M, Gracia-Ahufinger I, Mendez-Natera A, et al. In vivo selection of KPC-94 and KPC-95 in Klebsiella pneumoniae isolates from patients treated with ceftazidime/avibactam. Int J Antimicrob Agents. 2022;59(2):106524.

Article  PubMed  Google Scholar 

Wong JLC, Romano M, Kerry LE, Kwong HS, Low WW, Brett SJ, et al. OmpK36-mediated Carbapenem resistance attenuates ST258 Klebsiella pneumoniae in vivo. Nat Commun. 2019;10(1):3957.

Article 

留言 (0)

沒有登入
gif