Emergence of carbapenem resistance in persistent Shewanella algae bacteremia: the role of pdsS G547W mutation in adaptive subpopulation dynamics

Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015;13:497–508.

Article  CAS  PubMed  Google Scholar 

Norman TM, Lord ND, Paulsson J, Losick R. Stochastic switching of cell fate in microbes. Annu Rev Microbiol. 2015;69:381–403.

Article  CAS  PubMed  Google Scholar 

Dewachter L, Fauvart M, Michiels J. Bacterial heterogeneity and antibiotic survival: understanding and combatting persistence and heteroresistance. Mol Cell. 2019;76:255–67.

Article  CAS  PubMed  Google Scholar 

Andersson DI, Nicoloff H, Hjort K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat Rev Microbiol. 2019;17:479–96.

Article  CAS  PubMed  Google Scholar 

Tellgren-Roth C, Thorell K, Galperin MY, Krell T, Römling U, Sjöling Å, et al. Complete genome sequence and methylome of the type strain of Shewanella algae. Microbiol Resour Announc. 2021;10: e0055921.

Article  PubMed  Google Scholar 

Kim D-M, Kang C-I, Lee CS, Kim H-B, Kim E-C, Kim NJ, et al. Treatment failure due to emergence of resistance to carbapenem during therapy for Shewanella algae bacteremia. J Clin Microbiol. 2006;44:1172–4.

Article  PubMed  PubMed Central  Google Scholar 

Köser CU, Ellington MJ, Peacock SJ. Whole-genome sequencing to control antimicrobial resistance. Trends Genet. 2014;30:401–7.

Article  PubMed  PubMed Central  Google Scholar 

Didelot X, Walker AS, Peto TE, Crook DW, Wilson DJ. Within-host evolution of bacterial pathogens. Nat Rev Microbiol. 2016;14:150–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mwangi MM, Wu SW, Zhou Y, Sieradzki K, de Lencastre H, Richardson P, et al. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl Acad Sci USA. 2007;104:9451–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cannatelli A, Di Pilato V, Giani T, Arena F, Ambretti S, Gaibani P, et al. In vivo evolution to colistin resistance by PmrB sensor kinase mutation in KPC-producing Klebsiella pneumoniae is associated with low-dosage colistin treatment. Antimicrob Agents Chemother. 2014;58:4399–403.

Article  PubMed  PubMed Central  Google Scholar 

Tonkin-Hill G, Ling C, Chaguza C, Salter SJ, Hinfonthong P, Nikolaou E, et al. Pneumococcal within-host diversity during colonization, transmission and treatment. Nat Microbiol. 2022;7:1791–804.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Band VI, Satola SW, Burd EM, Farley MM, Jacob JT, Weiss DS. Carbapenem-resistant Klebsiella pneumoniae exhibiting clinically undetected colistin heteroresistance leads to treatment failure in a murine model of infection. MBio. 2018. https://doi.org/10.1128/mbio.02448-17.

Article  PubMed  PubMed Central  Google Scholar 

Nicoloff H, Hjort K, Levin BR, Andersson DI. The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification. Nat Microbiol. 2019;4:504–14.

Article  CAS  PubMed  Google Scholar 

Dordel J, Kim C, Chung M, de la Gándara MP, Holden MTJ, Parkhill J, et al. Novel determinants of antibiotic resistance: identification of mutated loci in highly methicillin-resistant subpopulations of methicillin-resistant Staphylococcus aureus. MBio. 2014;5: e01000.

Article  PubMed  PubMed Central  Google Scholar 

Ross MG, Russ C, Costello M, Hollinger A, Lennon NJ, Hegarty R, et al. Characterizing and measuring bias in sequence data. Genome Biol. 2013;14:R51.

Article  PubMed  PubMed Central  Google Scholar 

Sato MP, Ogura Y, Nakamura K, Nishida R, Gotoh Y, Hayashi M, et al. Comparison of the sequencing bias of currently available library preparation kits for Illumina sequencing of bacterial genomes and metagenomes. DNA Res. 2019;26:391–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo Y, Li J, Li C-I, Long J, Samuels DC, Shyr Y. The effect of strand bias in Illumina short-read sequencing data. BMC Genomics. 2012;13:666.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Browne PD, Nielsen TK, Kot W, Aggerholm A, Gilbert MTP, Puetz L, et al. GC bias affects genomic and metagenomic reconstructions, underrepresenting GC-poor organisms. Gigascience. 2020. https://doi.org/10.1093/gigascience/giaa008.

Article  PubMed  PubMed Central  Google Scholar 

Ferrarini M, Moretto M, Ward JA, Šurbanovski N, Stevanović V, Giongo L, et al. An evaluation of the PacBio RS platform for sequencing and de novo assembly of a chloroplast genome. BMC Genom. 2013;14:670.

Article  CAS  Google Scholar 

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA, Harris SR. Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol. 2015;16:294.

Article  PubMed  PubMed Central  Google Scholar 

Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucl Acids Res. 2020;49:D605–12.

Article  PubMed Central  Google Scholar 

Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucl Acids Res. 2019;48:D517–25.

PubMed Central  Google Scholar 

Chen I-MA, Chu K, Palaniappan K, Ratner A, Huang J, Huntemann M, et al. The IMG/M data management and analysis system v.7: content updates and new features. Nucl Acids Res. 2023;51:D723–32.

Article  CAS  PubMed  Google Scholar 

Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7.

Article  CAS  PubMed  Google Scholar 

Choi U, Lee C-R. Distinct roles of outer membrane porins in antibiotic resistance and membrane integrity in Escherichia coli. Front Microbiol. 2019;10:953.

Article  PubMed  PubMed Central  Google Scholar 

Zamorano L, Moyà B, Juan C, Mulet X, Blázquez J, Oliver A. The Pseudomonas aeruginosa CreBC two-component system plays a major role in the response to β-lactams, fitness, biofilm growth, and global regulation. Antimicrob Agents Chemother. 2014;58:5084–95.

Article  PubMed  PubMed Central  Google Scholar 

Gjermansen M, Ragas P, Tolker-Nielsen T. Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal. FEMS Microbiol Lett. 2006;265:215–24.

Article  CAS  PubMed  Google Scholar 

Abbas A, Adams C, Scully N, Glennon J, O’Gara F. A role for TonB1 in biofilm formation and quorum sensing in Pseudomonas aeruginosa. FEMS Microbiol Lett. 2007;274:269–78.

Article  CAS  PubMed  Google Scholar 

Rossez Y, Wolfson EB, Holmes A, Gally DL, Holden NJ. Bacterial flagella: twist and stick, or dodge across the kingdoms. PLoS Pathog. 2015;11: e1004483.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif