Dubois B et al (Nov. 2010) Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 9(11):1118–1127. https://doi.org/10.1016/S1474-4422(10)70223-4
Weller J, Budson A (2018) Current understanding of Alzheimer’s disease diagnosis and treatment, F1000Research, vol. 7, p. F1000 Faculty Rev-1161, Jul. https://doi.org/10.12688/f1000research.14506.1
Ferreira MdoC, Abreu MJ, Machado C, Santos B, Machado Á, Costa AS (2018) Neuropsychiatric Profile in Early Versus Late Onset Alzheimer’s Disease, Am. J. Alzheimers Dis. Dementias®, vol. 33, no. 2, pp. 93–99, Mar. https://doi.org/10.1177/1533317517744061
Scheltens P et al (Apr. 2021) Alzheimer’s disease. Lancet Lond Engl 397(10284):1577–1590. https://doi.org/10.1016/S0140-6736(20)32205-4
Cacace R, Sleegers K, Van Broeckhoven C (Jun. 2016) Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimers Dement 12(6):733–748. https://doi.org/10.1016/j.jalz.2016.01.012
Ridge PG, Mukherjee S, Crane PK, Kauwe JSK, Consortium ADG (2013) Alzheimer’s Disease: Analyzing the Missing Heritability, PLOS ONE, vol. 8, no. 11, p. e79771, Nov. https://doi.org/10.1371/journal.pone.0079771
Chen Z, Boehnke M, Wen X, Mukherjee B (2021) Revisiting the genome-wide significance threshold for common variant GWAS, G3 GenesGenomesGenetics, vol. 11, no. 2, p. jkaa056, Feb. https://doi.org/10.1093/g3journal/jkaa056
Kaler AS, Purcell LC (Jul. 2019) Estimation of a significance threshold for genome-wide association studies. BMC Genomics 20(1):618. https://doi.org/10.1186/s12864-019-5992-7
Hayes B (2013) Overview of statistical methods for Genome-Wide Association Studies (GWAS). In: Gondro C, van der Werf J, Hayes B (eds) in Genome-Wide Association Studies and genomic prediction. Humana, Totowa, NJ, pp 149–169. https://doi.org/10.1007/978-1-62703-447-0_6.
Pe’er I, Yelensky R, Altshuler D, Daly MJ (May 2008) Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol 32(4):381–385. https://doi.org/10.1002/gepi.20303
Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases, Science, vol. 273, no. 5281, pp. 1516–1517, Sep. https://doi.org/10.1126/science.273.5281.1516
McLaren W et al (Jun. 2016) The Ensembl variant effect predictor. Genome Biol 17(1):122. https://doi.org/10.1186/s13059-016-0974-4
Adzhubei IA et al (2010) Apr., A method and server for predicting damaging missense mutations, Nat. Methods, vol. 7, no. 4, pp. 248–249, https://doi.org/10.1038/nmeth0410-248
Capriotti E, Calabrese R, Fariselli P, Martelli PL, Altman RB, Casadio R (May 2013) WS-SNPs&GO: a web server for predicting the deleterious effect of human protein variants using functional annotation. BMC Genomics 14:S6. no. Suppl 310.1186/1471-2164-14-S3-S6
Berman HM et al (Jan. 2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242. https://doi.org/10.1093/nar/28.1.235
Waterhouse A et al (2018) Jul., SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res., vol. 46, no. W1, pp. W296–W303, https://doi.org/10.1093/nar/gky427
Zhou Y, Pan Q, Pires DEV, Rodrigues CHM, Ascher DB (Jun. 2023) DDMut: predicting effects of mutations on protein stability using deep learning. Nucleic Acids Res 51:W122–W128. no. W110.1093/nar/gkad472
Pires DEV, Ascher DB, Blundell TL (Jul. 2014) DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res 42:W314–W319. no. W110.1093/nar/gku411
Gowhari Shabgah A et al (May 2022) The role of atypical chemokine receptor D6 (ACKR2) in physiological and pathological conditions; friend, foe, or both? Front Immunol 13:861931. https://doi.org/10.3389/fimmu.2022.861931
Kauwe JSK et al (2014) Oct., Genome-Wide Association Study of CSF Levels of 59 Alzheimer’s Disease Candidate Proteins: Significant Associations with Proteins Involved in Amyloid Processing and Inflammation, PLOS Genet., vol. 10, no. 10, p. e1004758, https://doi.org/10.1371/journal.pgen.1004758
Han Z, Huang H, Gao Y, Huang Q (Jun. 2017) Functional annotation of Alzheimer’s disease associated loci revealed by GWASs. PLoS ONE 12(6):e0179677. https://doi.org/10.1371/journal.pone.0179677
Murcia JDG et al (May 2020) Atypical chemokine receptor ACKR2-V41A has decreased CCL2 binding, scavenging, and activation, supporting sustained inflammation and increased Alzheimer’s disease risk. Sci Rep 10:8019. https://doi.org/10.1038/s41598-020-64755-1
Vacchini A et al (2020) Sep., Control of Cytoskeletal Dynamics by β-Arrestin1/Myosin Vb Signaling Regulates Endosomal Sorting and Scavenging Activity of the Atypical Chemokine Receptor ACKR2, Vaccines, vol. 8, no. 3, Art. no. 3, https://doi.org/10.3390/vaccines8030542
Naj AC, Carney RM, Hahn SE, Slifer MA, Haines JL, Pericak-Vance MA (2013) Chapter 111 - Genetics of Alzheimer Disease, in Emery and Rimoin’s Principles and Practice of Medical Genetics (Sixth Edition), D. Rimoin, R. Pyeritz, and B. Korf, Eds., Oxford: Academic Press, pp. 1–20. https://doi.org/10.1016/B978-0-12-383834-6.00116-6
Soria Lopez JA, González HM, Léger GC (2019) Chapter 13 - Alzheimer’s disease, in Handbook of Clinical Neurology, vol. 167, S. T. Dekosky and S. Asthana, Eds., in Geriatric Neurology, vol. 167., Elsevier, pp. 231–255. https://doi.org/10.1016/B978-0-12-804766-8.00013-3
Yao Y, Shaligram SS, Su H (2021) Chapter 4 - Brain vascular biology, in Handbook of Clinical Neurology, vol. 176, S. W. Hetts and D. L. Cooke, Eds., in Interventional Neuroradiology, vol. 176., Elsevier, pp. 49–69. https://doi.org/10.1016/B978-0-444-64034-5.00005-5
Freeman LA, Shamburek RD, Biesecker L, Remaley AT (2016) Abstract 16714: The ‘Apolipoprotein EBethesda’ Variant is a Digenic Phenotype of APOE p.R176C/GALNT2 p.D314A, Circulation, Nov. Accessed: Feb. 10, 2024. [Online]. Available: https://www.ahajournals.org/doi/abs/https://doi.org/10.1161/circ.134.suppl_1.16714
Allen MD, Roses D, APOLIPOPROTEIN E ALLELES AS RISK, FACTORS IN ALZHEIMER’S DISEASE (1996), Annu. Rev. Med., vol. 47, no. Volume 47, pp. 387–400, Feb. 1996, https://doi.org/10.1146/annurev.med.47.1.387
Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL (Oct. 2015) Alzheimer’s disease. Nat Rev Dis Primer 1:15056. https://doi.org/10.1038/nrdp.2015.56
Lozupone M et al (2023) Dec., The Impact of Apolipoprotein E (APOE) Epigenetics on Aging and Sporadic Alzheimer’s Disease, Biology, vol. 12, no. 12, Art. no. 12, https://doi.org/10.3390/biology12121529
Yu C-E, Foraker J (2015) Epigenetic considerations of the APOE gene, Biomol. Concepts, vol. 6, no. 1, pp. 77–84, Mar. https://doi.org/10.1515/bmc-2014-0039
Zhang D et al (2010) Mar., Genetic Control of Individual Differences in Gene-Specific Methylation in Human Brain, Am. J. Hum. Genet., vol. 86, no. 3, pp. 411–419, https://doi.org/10.1016/j.ajhg.2010.02.005
Seripa D, D’Onofrio G, Panza F, Cascavilla L, Masullo C, Pilotto A (2011) The Genetics of the Human APOE Polymorphism, Rejuvenation Res., vol. 14, no. 5, pp. 491–500, Oct. https://doi.org/10.1089/rej.2011.1169
Corder EH et al (1993) Aug., Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families, Science, vol. 261, no. 5123, pp. 921–923, https://doi.org/10.1126/science.8346443
Reiman EM et al (Feb. 2020) Exceptionally low likelihood of Alzheimer’s dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nat Commun 11(1):667. https://doi.org/10.1038/s41467-019-14279-8
Salvadó G et al (2021) Jul., Differential associations of APOE-ε2 and APOE-ε4 alleles with PET-measured amyloid-β and tau deposition in older individuals without dementia, Eur. J. Nucl. Med. Mol. Imaging, vol. 48, no. 7, pp. 2212–2224, https://doi.org/10.1007/s00259-021-05192-8
Karasakal ÖF, Oktay EÖ, Kaman T (2023) Evaluation of missense SNVs within human APOE (Apolipoprotein E) gene via bioinformatics tools, Balıkesir Üniversitesi Fen Bilim. Enstitüsü Derg., vol. 25, no. 2, Art. no. 2, Jul. https://doi.org/10.25092/baunfbed.1197932
Ryu S, Atzmon G, Barzilai N, Raghavachari N, Suh Y (Apr. 2016) Genetic landscape of APOE in human longevity revealed by high-throughput sequencing. Mech Ageing Dev 155:7–9. https://doi.org/10.1016/j.mad.2016.02.010
Hellwege JN et al (2014) Genome-wide family-based linkage analysis of Exome Chip variants and Cardiometabolic Risk. Genet Epidemiol 38(4):345–352. https://doi.org/10.1002/gepi.21801
Article PubMed PubMed Central Google Scholar
Chen WJ et al (2017) Hypertriglyceridemic acute pancreatitis in emergency department: typical clinical features and genetic variants. J Dig Dis 18:359–368. https://doi.org/10.1111/1751-2980.12490
Article CAS PubMed Google Scholar
Salasova A, Monti G, Andersen OM, Nykjaer A (Nov. 2022) Finding memo: versatile interactions of the VPS10p-Domain receptors in Alzheimer’s disease. Mol Neurodegener 17(1):74. https://doi.org/10.1186/s13024-022-00576-2
Masoodi TA, Al Shammari SA, Al-Muammar MN, Alhamdan AA (2012) Screening and Evaluation of Deleterious SNPs in APOE Gene of Alzheimer’s Disease, Neurol. Res. Int., vol. no. 1, p. 480609, 2012, https://doi.org/10.1155/2012/480609
Korneenko TV, Pestov NB, Okkelman IA, Modyanov NN, Shakhparonov MI (Jan. 2015) P4-ATPase Atp8b1/FIC1: structural features and physiological functions in health and disease. Russ J Bioorg Chem 41(1):1–9. https://doi.org/10.1134/S1068162015010070
Holstege H et al (2022) Dec., Exome sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as risk factors for Alzheimer’s disease, Nat. Genet., vol. 54, no. 12, pp. 1786–1794, https://doi.org/10.1038/s41588-022-01208-7
Bendl J et al (2014) Jan., PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-Related Mutations, PLoS Comput. Biol., vol. 10, no. 1, p. e1003440, https://doi.org/10.1371/journal.pcbi.1003440
Reddy JS et al (2022) Polygenic risk score analysis identifies deleterious protein-coding variants in novel immune pathway genes ATP8B4, FCGR1A, and LILRB1 that associate with Alzheimer’s disease, Jul. 22, medRxiv. https://doi.org/10.1101/2022.07.12.22277557
Li Y, Xu S, Luo L, Yang J (2024) Role of Enzymes Capable of Transporting Phosphatidylserine in Brain Development and Brain Diseases, ACS Omega, vol. 9, no. 32, pp. 34243–34249, Aug. https://doi.org/10.1021/acsomega.4c05036
Asmamaw M, Zawdie B (Aug. 2021) Mechanism and applications of CRISPR/Cas-9-Mediated genome editing. Biol Targets Ther 15:353–361. https://doi.org/10.2147/BTT.S326422
Wirtz MK et al (2022) Jan., Identification of Missense Extracellular Matrix Gene Variants in a Large Glaucoma Pedigree and Investigation of the N700S Thrombospondin-1 Variant in Normal and Glaucomatous Trabecular Meshwork Cells, Curr. Eye Res., vol. 47, no. 1, pp. 79–90, https://doi.org/10.1080/02713683.2021.1945109
Mark K, Reis A, Zenker M (2006) Prenatal findings in four consecutive pregnancies with fetal Pierson syndrome, a newly defined congenital nephrosis syndrome, Prenat. Diagn., vol. 26, no. 3, pp. 262–266, Mar. https://doi.org/10.1002/pd.1393
Matejas V et al (2010) Mutations in the human laminin β2 (LAMB2) gene and the associated phenotypic spectruma. Hum Mutat 31(9):992–1002. https://doi.org/10.1002/humu.21304
Article CAS PubMed PubMed Central Google Scholar
Sarkar S et al (2023) Mar., Computational refinement identifies functional destructive single nucleotide polymorphisms associated with human retinoid X receptor gene, J. Biomol. Struct. Dyn., vol. 41, no. 4, pp. 1458–1478, https://doi.org/10.1080/07391102.2021.2021991
Šerý O et al (Jun. 2022) Six genetically linked mutations in the CD36 gene significantly delay the onset of Alzheimer’s disease. Sci Rep 12(1):10994. https://doi.org/10.1038/s41598-022-15299-z
Lin J, Chen J, Huang C (Jan. 2024) Systematic identification of key basement membrane related genes as potential new biomarkers in Alzheimer’s disease. Clin Neurol Neurosurg 236:108094. https://doi.org/10.1016/j.clineuro.2023.108094
Gabriel K, Egan B, Lithgow T (May 2003) Tom40, the import channel of the mitochondrial outer membrane, plays an active role in sorting imported proteins. EMBO J 22(10):2380–2386. https://doi.org/10.1093/emboj/cdg229
Lee E-G, Chen S, Leong L, Tulloch J, Yu C-E (2021) TOMM40 RNA Transcription in Alzheimer’s Disease Brain and Its Implication in Mitochondrial Dysfunction, Genes, vol. 12, no. 6, Art. no. 6, Jun. https://doi.org/10.3390/genes12060871
Baker KP, Schaniel A, Vestweber D, Schatz G (1990) A yeast mitochondrial outer membrane protein essential for protein import and cell viability, Nature, vol. 348, no. 6302, pp. 605–609, Dec. https://doi.org/10.1038/348605a0
Rd T, Bj M, Fe N (Oct. 2003) Characterization of Neurospora Crassa Tom40-deficient mutants and effect of specific mutations on Tom40 assembly. J Biol Chem 278(2). https://doi.org/10.1074/jbc.M208083200
Kizasu S et al (Jun. 2024) Effect of low ethanol concentration in maturation medium on developmental ability, mitochondria, and gene expression profile in mouse oocytes. Reprod Biol 24(2):100854. https://doi.org/10.1016/j.repbio.2023.100854
Billing O, Kao G, Naredi P (2011) Mitochondrial Function Is Required for Secretion of DAF-28/Insulin in C. elegans, PLoS ONE, vol. 6, no. 1, p. e14507, Jan. https://doi.org/10.1371/journal.pone.0014507
Gottschalk WK et al (Nov. 2014) The broad impact of TOM40 on neurodegenerative diseases in Aging. J Park Dis Alzheimers Dis 1(1). https://doi.org/10.13188/2376-922X.1000003
Martin ER et al (2000) Aug., SNPing Away at Complex Diseases: Analysis of Single-Nucleotide Polymorphisms around APOE in Alzheimer Disease, Am. J. Hum. Genet., vol. 67, no. 2, pp. 383–394
Naj AC et al (Sep. 2010) Dementia revealed: Novel chromosome 6 locus for late-onset Alzheimer Disease provides genetic evidence for Folate-Pathway abnormalities. PLoS Genet 6(9):e1001130. https://doi.org/10.1371/journal.pgen.1001130
Swerdlow RH, Burns JM, Khan SM (2014) The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives, Biochim. Biophys. Acta, vol. 1842, no. 8, pp. 1219–1231, Aug. https://doi.org/10.1016/j.bbadis.2013.09.010
Hirai K et al (May 2001) Mitochondrial abnormalities in Alzheimer’s Disease. J Neurosci 21(9):3017–3023. https://doi.org/10.1523/JNEUROSCI.21-09-03017.2001
Zhu Z et al (2021) Jun., TOMM40 and APOE variants synergistically increase the risk of Alzheimer’s disease in a Chinese population, Aging Clin. Exp. Res., vol. 33, no. 6, pp. 1667–1675, https://doi.org/10.1007/s40520-020-01661-6
Helisalmi S et al (2014) Dec., The Effect of TOMM40 Poly-T Repeat Lengths on Age of Onset and Cerebrospinal Fluid Biomarkers in Finnish Alzheimer’s Disease Patients, Neurodegener. Dis., vol. 14, no. 4, pp. 204–208, https://doi.org/10.1159/000367994
Zeitlow K et al (2017) Nov., The biological foundation of the genetic association of TOMM40 with late-onset Alzheimer’s disease, Biochim. Biophys. Acta BBA - Mol. Basis Dis., vol. 1863, no. 11, pp. 2973–2986, https://doi.org/10.1016/j.bbadis.2017.07.031
Chen Y-C et al (Feb. 2023) TOMM40 genetic variants cause Neuroinflammation in Alzheimer’s Disease. Int J Mol Sci 24(4):4085. https://doi.org/10.3390/ijms24044085
Wightman DP, Savage JE, de Leeuw CA, Jansen IE, Posthuma D (Feb. 2023) Rare variant aggregation in 148,508 exomes identifies genes associated with proxy dementia. Sci Rep 13:2179. https://doi.org/10.1038/s41598-023-29108-8
Takei N et al (May 2009) Genetic association study on in and around the APOE in late-onset Alzheimer disease in Japanese. Genomics 93(5):441–448. https://doi.org/10.1016/j.ygeno.2009.01.003
Fadista J, Manning AK, Florez JC, Groop L (Aug. 2016) The (in)famous GWAS P-value threshold revisited and updated for low-frequency variants. Eur J Hum Genet 24(8):1202–1205. https://doi.org/10.1038/ejhg.2015.269
Duggal P, Gillanders EM, Holmes TN, Bailey-Wilson JE (2008) Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies, BMC Genomics, vol. 9, no. 1, p. 516, Oct. https://doi.org/10.1186/1471-2164-9-516
Holland D et al (Feb. 2016) Estimating effect sizes and expected replication probabilities from GWAS Summary statistics. Front Genet 7. https://doi.org/10.3389/fgene.2016.00015
Kraft P, Zeggini E, Ioannidis JPA (2009) Replication in genome-wide association studies, Stat. Sci. Rev. J. Inst. Math. Stat., vol. 24, no. 4, pp. 561–573, Nov. https://doi.org/10.1214/09-STS290
留言 (0)