Analysis of Alzheimer’s disease associated deleterious non-synonymous single nucleotide polymorphisms and their impacts on protein structure and function by performing in-silico methods

Dubois B et al (Nov. 2010) Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 9(11):1118–1127. https://doi.org/10.1016/S1474-4422(10)70223-4

Weller J, Budson A (2018) Current understanding of Alzheimer’s disease diagnosis and treatment, F1000Research, vol. 7, p. F1000 Faculty Rev-1161, Jul. https://doi.org/10.12688/f1000research.14506.1

Ferreira MdoC, Abreu MJ, Machado C, Santos B, Machado Á, Costa AS (2018) Neuropsychiatric Profile in Early Versus Late Onset Alzheimer’s Disease, Am. J. Alzheimers Dis. Dementias®, vol. 33, no. 2, pp. 93–99, Mar. https://doi.org/10.1177/1533317517744061

Scheltens P et al (Apr. 2021) Alzheimer’s disease. Lancet Lond Engl 397(10284):1577–1590. https://doi.org/10.1016/S0140-6736(20)32205-4

Cacace R, Sleegers K, Van Broeckhoven C (Jun. 2016) Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimers Dement 12(6):733–748. https://doi.org/10.1016/j.jalz.2016.01.012

Ridge PG, Mukherjee S, Crane PK, Kauwe JSK, Consortium ADG (2013) Alzheimer’s Disease: Analyzing the Missing Heritability, PLOS ONE, vol. 8, no. 11, p. e79771, Nov. https://doi.org/10.1371/journal.pone.0079771

Chen Z, Boehnke M, Wen X, Mukherjee B (2021) Revisiting the genome-wide significance threshold for common variant GWAS, G3 GenesGenomesGenetics, vol. 11, no. 2, p. jkaa056, Feb. https://doi.org/10.1093/g3journal/jkaa056

Kaler AS, Purcell LC (Jul. 2019) Estimation of a significance threshold for genome-wide association studies. BMC Genomics 20(1):618. https://doi.org/10.1186/s12864-019-5992-7

Hayes B (2013) Overview of statistical methods for Genome-Wide Association Studies (GWAS). In: Gondro C, van der Werf J, Hayes B (eds) in Genome-Wide Association Studies and genomic prediction. Humana, Totowa, NJ, pp 149–169. https://doi.org/10.1007/978-1-62703-447-0_6.

Chapter  Google Scholar 

Pe’er I, Yelensky R, Altshuler D, Daly MJ (May 2008) Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol 32(4):381–385. https://doi.org/10.1002/gepi.20303

Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases, Science, vol. 273, no. 5281, pp. 1516–1517, Sep. https://doi.org/10.1126/science.273.5281.1516

McLaren W et al (Jun. 2016) The Ensembl variant effect predictor. Genome Biol 17(1):122. https://doi.org/10.1186/s13059-016-0974-4

Adzhubei IA et al (2010) Apr., A method and server for predicting damaging missense mutations, Nat. Methods, vol. 7, no. 4, pp. 248–249, https://doi.org/10.1038/nmeth0410-248

Capriotti E, Calabrese R, Fariselli P, Martelli PL, Altman RB, Casadio R (May 2013) WS-SNPs&GO: a web server for predicting the deleterious effect of human protein variants using functional annotation. BMC Genomics 14:S6. no. Suppl 310.1186/1471-2164-14-S3-S6

Berman HM et al (Jan. 2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242. https://doi.org/10.1093/nar/28.1.235

Waterhouse A et al (2018) Jul., SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res., vol. 46, no. W1, pp. W296–W303, https://doi.org/10.1093/nar/gky427

Zhou Y, Pan Q, Pires DEV, Rodrigues CHM, Ascher DB (Jun. 2023) DDMut: predicting effects of mutations on protein stability using deep learning. Nucleic Acids Res 51:W122–W128. no. W110.1093/nar/gkad472

Pires DEV, Ascher DB, Blundell TL (Jul. 2014) DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res 42:W314–W319. no. W110.1093/nar/gku411

Gowhari Shabgah A et al (May 2022) The role of atypical chemokine receptor D6 (ACKR2) in physiological and pathological conditions; friend, foe, or both? Front Immunol 13:861931. https://doi.org/10.3389/fimmu.2022.861931

Kauwe JSK et al (2014) Oct., Genome-Wide Association Study of CSF Levels of 59 Alzheimer’s Disease Candidate Proteins: Significant Associations with Proteins Involved in Amyloid Processing and Inflammation, PLOS Genet., vol. 10, no. 10, p. e1004758, https://doi.org/10.1371/journal.pgen.1004758

Han Z, Huang H, Gao Y, Huang Q (Jun. 2017) Functional annotation of Alzheimer’s disease associated loci revealed by GWASs. PLoS ONE 12(6):e0179677. https://doi.org/10.1371/journal.pone.0179677

Murcia JDG et al (May 2020) Atypical chemokine receptor ACKR2-V41A has decreased CCL2 binding, scavenging, and activation, supporting sustained inflammation and increased Alzheimer’s disease risk. Sci Rep 10:8019. https://doi.org/10.1038/s41598-020-64755-1

Vacchini A et al (2020) Sep., Control of Cytoskeletal Dynamics by β-Arrestin1/Myosin Vb Signaling Regulates Endosomal Sorting and Scavenging Activity of the Atypical Chemokine Receptor ACKR2, Vaccines, vol. 8, no. 3, Art. no. 3, https://doi.org/10.3390/vaccines8030542

Naj AC, Carney RM, Hahn SE, Slifer MA, Haines JL, Pericak-Vance MA (2013) Chapter 111 - Genetics of Alzheimer Disease, in Emery and Rimoin’s Principles and Practice of Medical Genetics (Sixth Edition), D. Rimoin, R. Pyeritz, and B. Korf, Eds., Oxford: Academic Press, pp. 1–20. https://doi.org/10.1016/B978-0-12-383834-6.00116-6

Soria Lopez JA, González HM, Léger GC (2019) Chapter 13 - Alzheimer’s disease, in Handbook of Clinical Neurology, vol. 167, S. T. Dekosky and S. Asthana, Eds., in Geriatric Neurology, vol. 167., Elsevier, pp. 231–255. https://doi.org/10.1016/B978-0-12-804766-8.00013-3

Yao Y, Shaligram SS, Su H (2021) Chapter 4 - Brain vascular biology, in Handbook of Clinical Neurology, vol. 176, S. W. Hetts and D. L. Cooke, Eds., in Interventional Neuroradiology, vol. 176., Elsevier, pp. 49–69. https://doi.org/10.1016/B978-0-444-64034-5.00005-5

Freeman LA, Shamburek RD, Biesecker L, Remaley AT (2016) Abstract 16714: The ‘Apolipoprotein EBethesda’ Variant is a Digenic Phenotype of APOE p.R176C/GALNT2 p.D314A, Circulation, Nov. Accessed: Feb. 10, 2024. [Online]. Available: https://www.ahajournals.org/doi/abs/https://doi.org/10.1161/circ.134.suppl_1.16714

Allen MD, Roses D, APOLIPOPROTEIN E ALLELES AS RISK, FACTORS IN ALZHEIMER’S DISEASE (1996), Annu. Rev. Med., vol. 47, no. Volume 47, pp. 387–400, Feb. 1996, https://doi.org/10.1146/annurev.med.47.1.387

Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL (Oct. 2015) Alzheimer’s disease. Nat Rev Dis Primer 1:15056. https://doi.org/10.1038/nrdp.2015.56

Lozupone M et al (2023) Dec., The Impact of Apolipoprotein E (APOE) Epigenetics on Aging and Sporadic Alzheimer’s Disease, Biology, vol. 12, no. 12, Art. no. 12, https://doi.org/10.3390/biology12121529

Yu C-E, Foraker J (2015) Epigenetic considerations of the APOE gene, Biomol. Concepts, vol. 6, no. 1, pp. 77–84, Mar. https://doi.org/10.1515/bmc-2014-0039

Zhang D et al (2010) Mar., Genetic Control of Individual Differences in Gene-Specific Methylation in Human Brain, Am. J. Hum. Genet., vol. 86, no. 3, pp. 411–419, https://doi.org/10.1016/j.ajhg.2010.02.005

Seripa D, D’Onofrio G, Panza F, Cascavilla L, Masullo C, Pilotto A (2011) The Genetics of the Human APOE Polymorphism, Rejuvenation Res., vol. 14, no. 5, pp. 491–500, Oct. https://doi.org/10.1089/rej.2011.1169

Corder EH et al (1993) Aug., Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families, Science, vol. 261, no. 5123, pp. 921–923, https://doi.org/10.1126/science.8346443

Reiman EM et al (Feb. 2020) Exceptionally low likelihood of Alzheimer’s dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nat Commun 11(1):667. https://doi.org/10.1038/s41467-019-14279-8

Salvadó G et al (2021) Jul., Differential associations of APOE-ε2 and APOE-ε4 alleles with PET-measured amyloid-β and tau deposition in older individuals without dementia, Eur. J. Nucl. Med. Mol. Imaging, vol. 48, no. 7, pp. 2212–2224, https://doi.org/10.1007/s00259-021-05192-8

Karasakal ÖF, Oktay EÖ, Kaman T (2023) Evaluation of missense SNVs within human APOE (Apolipoprotein E) gene via bioinformatics tools, Balıkesir Üniversitesi Fen Bilim. Enstitüsü Derg., vol. 25, no. 2, Art. no. 2, Jul. https://doi.org/10.25092/baunfbed.1197932

Ryu S, Atzmon G, Barzilai N, Raghavachari N, Suh Y (Apr. 2016) Genetic landscape of APOE in human longevity revealed by high-throughput sequencing. Mech Ageing Dev 155:7–9. https://doi.org/10.1016/j.mad.2016.02.010

Hellwege JN et al (2014) Genome-wide family-based linkage analysis of Exome Chip variants and Cardiometabolic Risk. Genet Epidemiol 38(4):345–352. https://doi.org/10.1002/gepi.21801

Article  PubMed  PubMed Central  Google Scholar 

Chen WJ et al (2017) Hypertriglyceridemic acute pancreatitis in emergency department: typical clinical features and genetic variants. J Dig Dis 18:359–368. https://doi.org/10.1111/1751-2980.12490

Article  CAS  PubMed  Google Scholar 

Salasova A, Monti G, Andersen OM, Nykjaer A (Nov. 2022) Finding memo: versatile interactions of the VPS10p-Domain receptors in Alzheimer’s disease. Mol Neurodegener 17(1):74. https://doi.org/10.1186/s13024-022-00576-2

Masoodi TA, Al Shammari SA, Al-Muammar MN, Alhamdan AA (2012) Screening and Evaluation of Deleterious SNPs in APOE Gene of Alzheimer’s Disease, Neurol. Res. Int., vol. no. 1, p. 480609, 2012, https://doi.org/10.1155/2012/480609

Korneenko TV, Pestov NB, Okkelman IA, Modyanov NN, Shakhparonov MI (Jan. 2015) P4-ATPase Atp8b1/FIC1: structural features and physiological functions in health and disease. Russ J Bioorg Chem 41(1):1–9. https://doi.org/10.1134/S1068162015010070

Holstege H et al (2022) Dec., Exome sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as risk factors for Alzheimer’s disease, Nat. Genet., vol. 54, no. 12, pp. 1786–1794, https://doi.org/10.1038/s41588-022-01208-7

Bendl J et al (2014) Jan., PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-Related Mutations, PLoS Comput. Biol., vol. 10, no. 1, p. e1003440, https://doi.org/10.1371/journal.pcbi.1003440

Reddy JS et al (2022) Polygenic risk score analysis identifies deleterious protein-coding variants in novel immune pathway genes ATP8B4, FCGR1A, and LILRB1 that associate with Alzheimer’s disease, Jul. 22, medRxiv. https://doi.org/10.1101/2022.07.12.22277557

Li Y, Xu S, Luo L, Yang J (2024) Role of Enzymes Capable of Transporting Phosphatidylserine in Brain Development and Brain Diseases, ACS Omega, vol. 9, no. 32, pp. 34243–34249, Aug. https://doi.org/10.1021/acsomega.4c05036

Asmamaw M, Zawdie B (Aug. 2021) Mechanism and applications of CRISPR/Cas-9-Mediated genome editing. Biol Targets Ther 15:353–361. https://doi.org/10.2147/BTT.S326422

Wirtz MK et al (2022) Jan., Identification of Missense Extracellular Matrix Gene Variants in a Large Glaucoma Pedigree and Investigation of the N700S Thrombospondin-1 Variant in Normal and Glaucomatous Trabecular Meshwork Cells, Curr. Eye Res., vol. 47, no. 1, pp. 79–90, https://doi.org/10.1080/02713683.2021.1945109

Mark K, Reis A, Zenker M (2006) Prenatal findings in four consecutive pregnancies with fetal Pierson syndrome, a newly defined congenital nephrosis syndrome, Prenat. Diagn., vol. 26, no. 3, pp. 262–266, Mar. https://doi.org/10.1002/pd.1393

Matejas V et al (2010) Mutations in the human laminin β2 (LAMB2) gene and the associated phenotypic spectruma. Hum Mutat 31(9):992–1002. https://doi.org/10.1002/humu.21304

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sarkar S et al (2023) Mar., Computational refinement identifies functional destructive single nucleotide polymorphisms associated with human retinoid X receptor gene, J. Biomol. Struct. Dyn., vol. 41, no. 4, pp. 1458–1478, https://doi.org/10.1080/07391102.2021.2021991

Šerý O et al (Jun. 2022) Six genetically linked mutations in the CD36 gene significantly delay the onset of Alzheimer’s disease. Sci Rep 12(1):10994. https://doi.org/10.1038/s41598-022-15299-z

Lin J, Chen J, Huang C (Jan. 2024) Systematic identification of key basement membrane related genes as potential new biomarkers in Alzheimer’s disease. Clin Neurol Neurosurg 236:108094. https://doi.org/10.1016/j.clineuro.2023.108094

Gabriel K, Egan B, Lithgow T (May 2003) Tom40, the import channel of the mitochondrial outer membrane, plays an active role in sorting imported proteins. EMBO J 22(10):2380–2386. https://doi.org/10.1093/emboj/cdg229

Lee E-G, Chen S, Leong L, Tulloch J, Yu C-E (2021) TOMM40 RNA Transcription in Alzheimer’s Disease Brain and Its Implication in Mitochondrial Dysfunction, Genes, vol. 12, no. 6, Art. no. 6, Jun. https://doi.org/10.3390/genes12060871

Baker KP, Schaniel A, Vestweber D, Schatz G (1990) A yeast mitochondrial outer membrane protein essential for protein import and cell viability, Nature, vol. 348, no. 6302, pp. 605–609, Dec. https://doi.org/10.1038/348605a0

Rd T, Bj M, Fe N (Oct. 2003) Characterization of Neurospora Crassa Tom40-deficient mutants and effect of specific mutations on Tom40 assembly. J Biol Chem 278(2). https://doi.org/10.1074/jbc.M208083200

Kizasu S et al (Jun. 2024) Effect of low ethanol concentration in maturation medium on developmental ability, mitochondria, and gene expression profile in mouse oocytes. Reprod Biol 24(2):100854. https://doi.org/10.1016/j.repbio.2023.100854

Billing O, Kao G, Naredi P (2011) Mitochondrial Function Is Required for Secretion of DAF-28/Insulin in C. elegans, PLoS ONE, vol. 6, no. 1, p. e14507, Jan. https://doi.org/10.1371/journal.pone.0014507

Gottschalk WK et al (Nov. 2014) The broad impact of TOM40 on neurodegenerative diseases in Aging. J Park Dis Alzheimers Dis 1(1). https://doi.org/10.13188/2376-922X.1000003

Martin ER et al (2000) Aug., SNPing Away at Complex Diseases: Analysis of Single-Nucleotide Polymorphisms around APOE in Alzheimer Disease, Am. J. Hum. Genet., vol. 67, no. 2, pp. 383–394

Naj AC et al (Sep. 2010) Dementia revealed: Novel chromosome 6 locus for late-onset Alzheimer Disease provides genetic evidence for Folate-Pathway abnormalities. PLoS Genet 6(9):e1001130. https://doi.org/10.1371/journal.pgen.1001130

Swerdlow RH, Burns JM, Khan SM (2014) The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives, Biochim. Biophys. Acta, vol. 1842, no. 8, pp. 1219–1231, Aug. https://doi.org/10.1016/j.bbadis.2013.09.010

Hirai K et al (May 2001) Mitochondrial abnormalities in Alzheimer’s Disease. J Neurosci 21(9):3017–3023. https://doi.org/10.1523/JNEUROSCI.21-09-03017.2001

Zhu Z et al (2021) Jun., TOMM40 and APOE variants synergistically increase the risk of Alzheimer’s disease in a Chinese population, Aging Clin. Exp. Res., vol. 33, no. 6, pp. 1667–1675, https://doi.org/10.1007/s40520-020-01661-6

Helisalmi S et al (2014) Dec., The Effect of TOMM40 Poly-T Repeat Lengths on Age of Onset and Cerebrospinal Fluid Biomarkers in Finnish Alzheimer’s Disease Patients, Neurodegener. Dis., vol. 14, no. 4, pp. 204–208, https://doi.org/10.1159/000367994

Zeitlow K et al (2017) Nov., The biological foundation of the genetic association of TOMM40 with late-onset Alzheimer’s disease, Biochim. Biophys. Acta BBA - Mol. Basis Dis., vol. 1863, no. 11, pp. 2973–2986, https://doi.org/10.1016/j.bbadis.2017.07.031

Chen Y-C et al (Feb. 2023) TOMM40 genetic variants cause Neuroinflammation in Alzheimer’s Disease. Int J Mol Sci 24(4):4085. https://doi.org/10.3390/ijms24044085

Wightman DP, Savage JE, de Leeuw CA, Jansen IE, Posthuma D (Feb. 2023) Rare variant aggregation in 148,508 exomes identifies genes associated with proxy dementia. Sci Rep 13:2179. https://doi.org/10.1038/s41598-023-29108-8

Takei N et al (May 2009) Genetic association study on in and around the APOE in late-onset Alzheimer disease in Japanese. Genomics 93(5):441–448. https://doi.org/10.1016/j.ygeno.2009.01.003

Fadista J, Manning AK, Florez JC, Groop L (Aug. 2016) The (in)famous GWAS P-value threshold revisited and updated for low-frequency variants. Eur J Hum Genet 24(8):1202–1205. https://doi.org/10.1038/ejhg.2015.269

Duggal P, Gillanders EM, Holmes TN, Bailey-Wilson JE (2008) Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies, BMC Genomics, vol. 9, no. 1, p. 516, Oct. https://doi.org/10.1186/1471-2164-9-516

Holland D et al (Feb. 2016) Estimating effect sizes and expected replication probabilities from GWAS Summary statistics. Front Genet 7. https://doi.org/10.3389/fgene.2016.00015

Kraft P, Zeggini E, Ioannidis JPA (2009) Replication in genome-wide association studies, Stat. Sci. Rev. J. Inst. Math. Stat., vol. 24, no. 4, pp. 561–573, Nov. https://doi.org/10.1214/09-STS290

留言 (0)

沒有登入
gif