Antibiotic-recalcitrant Salmonella during infection

Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

Article  CAS  Google Scholar 

Review on Antimicrobial Resistance. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations (HM Government & Wellcome Trust, 2014).

Levin-Reisman, I. et al. Antibiotic tolerance facilitates the evolution of resistance. Science 355, 826–830 (2017). This study provides some of the earliest evidence that antibiotic tolerance leads to resistance.

Article  PubMed  CAS  Google Scholar 

Windels, E. M. et al. Bacterial persistence promotes the evolution of antibiotic resistance by increasing survival and mutation rates. ISME J. 13, 1239 (2019).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Santi, I., Manfredi, P., Maffei, E., Egli, A. & Jenal, U. Evolution of antibiotic tolerance shapes resistance development in chronic Pseudomonas aeruginosa infections. mBio 12, e03482-20 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Bigger, J. W. Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet 244, 497–500 (1944).

Article  Google Scholar 

Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004).

Article  PubMed  CAS  Google Scholar 

Gal-Mor, O., Boyle, E. C. & Grassl, G. A. Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ. Front. Microbiol. 5, 102622 (2014).

Article  Google Scholar 

Hughes, M., Appiah, G. & Watkins, L. F. Typhoid & Paratyphoid Fever. In CDC Yellow Book 2024: Health Information for International Travel (Oxford Univ. Press, 2023).

Plumb, I., Fields, P. & Bruce, B. Salmonellosis, nontyphoidal. In CDC Yellow Book 2024: Health Information for International Travel (Oxford Univ. Press, 2023).

Roth, G. A. et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1736–1788 (2018).

Article  Google Scholar 

Medalla, F. et al. Increased incidence of antimicrobial-resistant nontyphoidal Salmonella infections, United States, 2004–2016. Emerg. Infect. Dis. 27, 1662–1672 (2021).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Takem, E. N., Roca, A. & Cunnington, A. The association between malaria and nontyphoid Salmonella bacteraemia in children in sub-Saharan Africa: a literature review. Malar. J. 13, 400 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Brent, A. J. et al. Salmonella bacteremia in Kenyan children. J. Pediatr. Infect. Dis. 25, 230–236 (2006).

Article  Google Scholar 

Marchello, C. S. et al. Complications and mortality of non-typhoidal Salmonella invasive disease: a global systematic review and meta-analysis. Lancet Infect. Dis. 22, 692–705 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Nyirenda, T. S., Mandala, W. L., Gordon, M. A. & Mastroeni, P. Immunological bases of increased susceptibility to invasive nontyphoidal Salmonella infection in children with malaria and anaemia. Microbes Infect. 20, 589–598 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Griffin, A. J., Li, L. X., Voedisch, S., Pabst, O. & McSorley, S. J. Dissemination of persistent intestinal bacteria via the mesenteric lymph nodes causes typhoid relapse. Infect. Immun. 79, 1479–1488 (2011).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Helaine, S. et al. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343, 204–208 (2014).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Balaban, N. Q. et al. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 17, 441–448 (2019). This review provides a comprehensive overview of the terms and definitions used throughout the field as agreed upon by a consensus of interested laboratories.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Weinstein, M. P. & Lewis, J. S. The Clinical and Laboratory Standards Institute Subcommittee on Antimicrobial Susceptibility Testing: background, organization, functions, and processes. J. Clin. Microbiol. 58, e01864-19 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Giske, C. G. et al. Update from the European Committee on Antimicrobial Susceptibility Testing (EUCAST). J. Clin. Microbiol. 60, e0027621 (2022).

Article  PubMed  Google Scholar 

Darby, E. M. et al. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 21, 280–295 (2022).

Article  PubMed  Google Scholar 

Britto, C. D., Wong, V. K., Dougan, G. & Pollard, A. J. A systematic review of antimicrobial resistance in Salmonella enterica serovar Typhi, the etiological agent of typhoid. PLoS Negl. Trop. Dis. 12, e0006779 (2018).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kariuki, S., Gordon, M. A., Feasey, N. & Parry, C. M. Antimicrobial resistance and management of invasive Salmonella disease. Vaccine 33, C21 (2015).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dewachter, L., Fauvart, M. & Michiels, J. Bacterial heterogeneity and antibiotic survival: understanding and combatting persistence and heteroresistance. Mol. Cell 76, 255–267 (2019).

Article  PubMed  CAS  Google Scholar 

Andersson, D. I., Nicoloff, H. & Hjort, K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat. Rev. Microbiol. 17, 479–496 (2019).

Article  PubMed  CAS  Google Scholar 

Nicoloff, H., Hjort, K., Levin, B. R. & Andersson, D. I. The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification. Nat. Microbiol. 4, 504–514 (2019).

Article  PubMed  CAS  Google Scholar 

Hjort, K., Nicoloff, H. & Andersson, D. I. Unstable tandem gene amplification generates heteroresistance (variation in resistance within a population) to colistin in Salmonella enterica. Mol. Microbiol. 102, 274–289 (2016).

Article  PubMed  CAS  Google Scholar 

El-Halfawy, O. M. & Valvano, M. A. Antimicrobial heteroresistance: an emerging field in need of clarity. Clin. Microbiol. Rev. 28, 191–207 (2015).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pereira, C., Larsson, J., Hjort, K., Elf, J. & Andersson, D. I. The highly dynamic nature of bacterial heteroresistance impairs its clinical detection. Commun. Biol. 4, 521 (2021).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pontes, M. H. & Groisman, E. A. Slow growth determines nonheritable antibiotic resistance in Salmonella enterica. Sci. Signal. 12, eaax3938 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Michaux, C., Ronneau, S., Giorgio, R. T. & Helaine, S. Antibiotic tolerance and persistence have distinct fitness trade-offs. PLoS Pathog. 18, e1010963 (2022).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rossi, O. et al. Within-host spatiotemporal dynamics of systemic Salmonella infection during and after antimicrobial treatment. J. Antimicrob. Chemother. 72, 3390–3397 (2017). This study relies on DNA barcodes to provide one of the only quantitative measures to date of Salmonella dissemination patterns following antibiotic withdrawal.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rizvanovic, A. et al. The RNA-binding protein ProQ promotes antibiotic persistence in Salmonella. mBio 13, e0289122 (2022).

Article  PubMed

留言 (0)

沒有登入
gif