Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).
Review on Antimicrobial Resistance. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations (HM Government & Wellcome Trust, 2014).
Levin-Reisman, I. et al. Antibiotic tolerance facilitates the evolution of resistance. Science 355, 826–830 (2017). This study provides some of the earliest evidence that antibiotic tolerance leads to resistance.
Article PubMed CAS Google Scholar
Windels, E. M. et al. Bacterial persistence promotes the evolution of antibiotic resistance by increasing survival and mutation rates. ISME J. 13, 1239 (2019).
Article PubMed PubMed Central CAS Google Scholar
Santi, I., Manfredi, P., Maffei, E., Egli, A. & Jenal, U. Evolution of antibiotic tolerance shapes resistance development in chronic Pseudomonas aeruginosa infections. mBio 12, e03482-20 (2021).
Article PubMed PubMed Central Google Scholar
Bigger, J. W. Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet 244, 497–500 (1944).
Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004).
Article PubMed CAS Google Scholar
Gal-Mor, O., Boyle, E. C. & Grassl, G. A. Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ. Front. Microbiol. 5, 102622 (2014).
Hughes, M., Appiah, G. & Watkins, L. F. Typhoid & Paratyphoid Fever. In CDC Yellow Book 2024: Health Information for International Travel (Oxford Univ. Press, 2023).
Plumb, I., Fields, P. & Bruce, B. Salmonellosis, nontyphoidal. In CDC Yellow Book 2024: Health Information for International Travel (Oxford Univ. Press, 2023).
Roth, G. A. et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1736–1788 (2018).
Medalla, F. et al. Increased incidence of antimicrobial-resistant nontyphoidal Salmonella infections, United States, 2004–2016. Emerg. Infect. Dis. 27, 1662–1672 (2021).
Article PubMed PubMed Central CAS Google Scholar
Takem, E. N., Roca, A. & Cunnington, A. The association between malaria and nontyphoid Salmonella bacteraemia in children in sub-Saharan Africa: a literature review. Malar. J. 13, 400 (2014).
Article PubMed PubMed Central Google Scholar
Brent, A. J. et al. Salmonella bacteremia in Kenyan children. J. Pediatr. Infect. Dis. 25, 230–236 (2006).
Marchello, C. S. et al. Complications and mortality of non-typhoidal Salmonella invasive disease: a global systematic review and meta-analysis. Lancet Infect. Dis. 22, 692–705 (2022).
Article PubMed PubMed Central Google Scholar
Nyirenda, T. S., Mandala, W. L., Gordon, M. A. & Mastroeni, P. Immunological bases of increased susceptibility to invasive nontyphoidal Salmonella infection in children with malaria and anaemia. Microbes Infect. 20, 589–598 (2018).
Article PubMed PubMed Central Google Scholar
Griffin, A. J., Li, L. X., Voedisch, S., Pabst, O. & McSorley, S. J. Dissemination of persistent intestinal bacteria via the mesenteric lymph nodes causes typhoid relapse. Infect. Immun. 79, 1479–1488 (2011).
Article PubMed PubMed Central CAS Google Scholar
Helaine, S. et al. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343, 204–208 (2014).
Article PubMed PubMed Central CAS Google Scholar
Balaban, N. Q. et al. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 17, 441–448 (2019). This review provides a comprehensive overview of the terms and definitions used throughout the field as agreed upon by a consensus of interested laboratories.
Article PubMed PubMed Central CAS Google Scholar
Weinstein, M. P. & Lewis, J. S. The Clinical and Laboratory Standards Institute Subcommittee on Antimicrobial Susceptibility Testing: background, organization, functions, and processes. J. Clin. Microbiol. 58, e01864-19 (2020).
Article PubMed PubMed Central Google Scholar
Giske, C. G. et al. Update from the European Committee on Antimicrobial Susceptibility Testing (EUCAST). J. Clin. Microbiol. 60, e0027621 (2022).
Darby, E. M. et al. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 21, 280–295 (2022).
Britto, C. D., Wong, V. K., Dougan, G. & Pollard, A. J. A systematic review of antimicrobial resistance in Salmonella enterica serovar Typhi, the etiological agent of typhoid. PLoS Negl. Trop. Dis. 12, e0006779 (2018).
Article PubMed PubMed Central CAS Google Scholar
Kariuki, S., Gordon, M. A., Feasey, N. & Parry, C. M. Antimicrobial resistance and management of invasive Salmonella disease. Vaccine 33, C21 (2015).
Article PubMed PubMed Central CAS Google Scholar
Dewachter, L., Fauvart, M. & Michiels, J. Bacterial heterogeneity and antibiotic survival: understanding and combatting persistence and heteroresistance. Mol. Cell 76, 255–267 (2019).
Article PubMed CAS Google Scholar
Andersson, D. I., Nicoloff, H. & Hjort, K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat. Rev. Microbiol. 17, 479–496 (2019).
Article PubMed CAS Google Scholar
Nicoloff, H., Hjort, K., Levin, B. R. & Andersson, D. I. The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification. Nat. Microbiol. 4, 504–514 (2019).
Article PubMed CAS Google Scholar
Hjort, K., Nicoloff, H. & Andersson, D. I. Unstable tandem gene amplification generates heteroresistance (variation in resistance within a population) to colistin in Salmonella enterica. Mol. Microbiol. 102, 274–289 (2016).
Article PubMed CAS Google Scholar
El-Halfawy, O. M. & Valvano, M. A. Antimicrobial heteroresistance: an emerging field in need of clarity. Clin. Microbiol. Rev. 28, 191–207 (2015).
Article PubMed PubMed Central CAS Google Scholar
Pereira, C., Larsson, J., Hjort, K., Elf, J. & Andersson, D. I. The highly dynamic nature of bacterial heteroresistance impairs its clinical detection. Commun. Biol. 4, 521 (2021).
Article PubMed PubMed Central CAS Google Scholar
Pontes, M. H. & Groisman, E. A. Slow growth determines nonheritable antibiotic resistance in Salmonella enterica. Sci. Signal. 12, eaax3938 (2019).
Article PubMed PubMed Central Google Scholar
Michaux, C., Ronneau, S., Giorgio, R. T. & Helaine, S. Antibiotic tolerance and persistence have distinct fitness trade-offs. PLoS Pathog. 18, e1010963 (2022).
Article PubMed PubMed Central CAS Google Scholar
Rossi, O. et al. Within-host spatiotemporal dynamics of systemic Salmonella infection during and after antimicrobial treatment. J. Antimicrob. Chemother. 72, 3390–3397 (2017). This study relies on DNA barcodes to provide one of the only quantitative measures to date of Salmonella dissemination patterns following antibiotic withdrawal.
Article PubMed PubMed Central CAS Google Scholar
Rizvanovic, A. et al. The RNA-binding protein ProQ promotes antibiotic persistence in Salmonella. mBio 13, e0289122 (2022).
留言 (0)