Radiomics based on brain-to-tumor interface enables prediction of metastatic tumor type of brain metastasis: a proof-of-concept study

Boire A, Brastianos PK, Garzia L, Valiente M (2020) Brain metastasis. Nat Rev Cancer 20:4–11. https://doi.org/10.1038/s41568-019-0220-y

Article  CAS  PubMed  Google Scholar 

Cagney DN, Martin AM, Catalano PJ, Redig AJ, Lin NU, Lee EQ, Wen PY, Dunn IF, Bi WL, Weiss SE (2017) Incidence and prognosis of patients with brain metastases at diagnosis of systemic malignancy: a population-based study. Neuro Oncol 19:1511–1521. https://doi.org/10.1093/neuonc/nox077

Article  PubMed  PubMed Central  Google Scholar 

Nayak L, Lee EQ, Wen PY (2012) Epidemiology of brain metastases. Currentoncol Rep 14:48–54. https://doi.org/10.1007/s11912-011-0203-y

Article  Google Scholar 

Pope WB (2018) Brain metastases: neuroimaging. Handb Clin Neurol 149:89–112. https://doi.org/10.1016/B978-0-12-811161-1.00007-4

Article  PubMed  PubMed Central  Google Scholar 

Bekaert L, Emery E, Levallet G, Lechapt-Zalcman E (2017) Histopathologic diagnosis of brain metastases: current trends in management and futureconsiderations. Brain Tumor Pathol 34:8–19. https://doi.org/10.1007/s10014-016-0275-3

Article  CAS  PubMed  Google Scholar 

Brastianos HC, Cahill DP, Brastianos PK (2015) Systemic therapy of brainmetastases. Curr Neurol Neurosci Rep 15:1–10. https://doi.org/10.1007/s11910-014-0518-9

Article  CAS  Google Scholar 

Nguyen LN, Maor MH, Oswald MJ (1998) Brain metastases as the only manifestation of an undetected primary tumor. Cancer: Interdiscip Int J Am Cancer Soc 83(10):2181–2184. https://doi.org/10.1002/(SICI)1097-0142(19981115)83:10%3c2181::AID-CNCR17%3e3.0.CO;2-J

Article  CAS  Google Scholar 

Balestrino R, Rudà R, Soffietti R (2020) Brain metastasis from unknown primarytumour: moving from old retrospective studies to clinical trials on targeted agents. Cancers 12:3350. https://doi.org/10.3390/cancers12113350

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xue C, Zhou Q, Xi H, Zhou J (2023) Radiomics: a review of current applications and possibilities in the assessment of tumor microenvironment. Diagn Interv Imaging 104:113–122. https://doi.org/10.1016/j.diii.2022.10.008

Article  PubMed  Google Scholar 

Yi Z, Long L, Zeng Y, Liu Z (2021) Current advances and challenges inradiomics of brain tumors. Front Oncol 11:732196. https://doi.org/10.3389/fonc.2021.732196

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiao T, Li F, Cui Y, Wang X, Li B, Shi F, Xia Y, Zhou Q, Zeng Q (2023) Deeplearning with an attention mechanism for differentiating the origin of brain metastasis using MR images. J Magn Reson Imaging 58:1624–1635. https://doi.org/10.1002/jmri.28695

Article  PubMed  Google Scholar 

Kniep HC, Madesta F, Schneider T, Hanning U, Schönfeld MH, Schön G, Fiehler J, Gauer T, Werner R, Gellissen S (2019) Radiomics of brain MRI: utility in prediction of metastatic tumor type. Radiology 290:479–487. https://doi.org/10.1148/radiol.2018180946

Article  PubMed  Google Scholar 

Zhao Lm HuR, Xie FF, Clay Kargilis D, Imami M, Yang S, Guo JQ, Jiao X, Rt C, Wei-Hua L (2023) Radiomic-based MRI for classification of solitary brain metastases subtypes from primary lymphoma of the central nervous system. J Magn Reson Imaging 57:227–235. https://doi.org/10.1002/jmri.28276

Article  PubMed  Google Scholar 

Berghoff AS, Rajky O, Winkler F, Bartsch R, Furtner J, Hainfellner JA, Goodman SL, Weller M, Schittenhelm J, Preusser M (2013) Invasion patterns in brain metastases of solid cancers. Neuro Oncol 15:1664–1672. https://doi.org/10.1002/jmri.28276

Article  PubMed  PubMed Central  Google Scholar 

Joo L, Park JE, Park SY, Nam SJ, Kim Y-H, Kim JH, Kim HS (2021) Extensive peritumoral edema and brain-to-tumor interface MRI features enable prediction of brain invasion in meningioma: development and validation. Neuro Oncol 23:324–333. https://doi.org/10.1093/neuonc/noaa190

Article  PubMed  Google Scholar 

Li N, Mo Y, Huang C, Han K, He M, Wang X, Wen J, Yang S, Wu H, Dong F (2021) A clinical semantic and radiomics nomogram for predicting brain invasion in WHO grade II meningioma based on tumor and tumor-to-brain interface features. Front Oncol 11:752158. https://doi.org/10.3389/fonc.2021.752158

Article  PubMed  PubMed Central  Google Scholar 

Zhao Z, Nie C, Zhao L, Xiao D, Zheng J, Zhang H, Yan P, Jiang X, Zhao H (2023) Multi-parametric MRI-based machine learning model for prediction of WHOgrading in patients with meningiomas. Eur Radiol. https://doi.org/10.1007/s00330-023-10252-8

Article  PubMed  PubMed Central  Google Scholar 

Xiao D, Wang J, Wang X, Fu P, Zhao H, Yan P, Jiang X (2021) Distinguishing brain abscess from necrotic glioblastoma using MRI-based intranodular radiomic features and peritumoral edema/tumor volume ratio. J Integr Neurosci 20:623–634. https://doi.org/10.31083/j.jin2003066

Article  PubMed  Google Scholar 

Fan Y, Wang X, Yang C, Chen H, Wang H, Wang X, Hou S, Wang L, Luo Y, Sha X (2023) Brain-tumor interface-based MRI radiomics models to determine EGFR mutation, response to EGFR-TKI and T790M resistance mutation in non-small cell lung carcinoma brain metastasis. J Magn Reson Imaging 58:1838–1847. https://doi.org/10.1002/jmri.28751

Article  PubMed  Google Scholar 

Fan Y, Zhao Z, Wang X, Ai H, Yang C, Luo Y, Jiang X (2022) Radiomics forprediction of response to EGFR-TKI based on metastasis/brain parenchyma (M/BP)-interface. Radiol Med (Torino) 127:1342–1354. https://doi.org/10.1007/s11547-022-01569-3

Article  PubMed  Google Scholar 

Van Griethuysen JJ, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RG, Fillion-Robin J-C, Pieper S, Aerts HJ (2017) Computational radiomics system to decode the radiographic phenotype. Can Res 77:e104–e107. https://doi.org/10.1158/0008-5472

Article  Google Scholar 

Leijenaar RT, Carvalho S, Velazquez ER, Van Elmpt WJ, Parmar C, Hoekstra OS, Hoekstra CJ, Boellaard R, Dekker AL, Gillies RJ (2013) Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol 52:1391–1397. https://doi.org/10.3109/0284186X.2013.812798

Article  CAS  PubMed  Google Scholar 

Tibshirani R (1997) The lasso method for variable selection in the Cox model. Stat Med 16:385–395. https://doi.org/10.1002/(sici)1097-0258(19970228)16:4%3c385::aid-sim380%3e3.0.co;2-3

Article  CAS  PubMed  Google Scholar 

Meyen AN, Sooriyarachchi MR (2015) Simulation study of a novel method for comparing more than two independent receiver operating characteristic (ROC) curves based on the area under the curves (AUCs). J Nat Sci Found Sri Lanka 43:357. https://doi.org/10.4038/jnsfsr.v43i4.7970

Article  Google Scholar 

Soffietti R, Abacioglu U, Baumert B, Combs SE, Kinhult S, Kros JM, Marosi C, Metellus P, Radbruch A, Villa Freixa SS (2017) Diagnosis and treatment of brain metastases from solid tumors: guidelines from the European Association of Neuro-Oncology (EANO). Neuro Oncol 19:162–174. https://doi.org/10.1093/neuonc/now241

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hayashida Y, Hirai T, Morishita S, Kitajima M, Murakami R, Korogi Y, Makino K, Nakamura H, Ikushima I, Yamura M (2006) Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity. Am J Neuroradiol 27:1419–1425

CAS  PubMed  PubMed Central  Google Scholar 

Hirano H, Yokoyama S, Yunoue S, Yonezawa H, Yatsushiro K, Yoshioka T, Hanaya R, Tokimura H, Arita K (2014) MRI T2 hypointensity of metastatic brain tumors from gastric and colonic cancers. Int J Clin Oncol 19:643–648. https://doi.org/10.1007/s10147-013-0596-8

Article  CAS  PubMed  Google Scholar 

Lee NK, Kim S, Kim HS, Jeon TY, Kim GH, Kim DU, Kim TU, Kang DH (2011) Spectrum of mucin-producing neoplastic conditions of the abdomen and pelvis: cross-sectional imaging evaluation. World J Gastroenterol: WJG 17:4757. https://doi.org/10.3748/wjg.v17.i43.4757

Article  PubMed  PubMed Central  Google Scholar 

Xiao D, Zhao Z, Liu J, Wang X, Fu P, Le Grange JM, Wang J, Guo X, Zhao H, Shi J (2021) Diagnosis of invasive meningioma based on brain-tumor interface radiomics features on brain MR images: a multicenter study. Front Oncol 11:708040. https://doi.org/10.3

留言 (0)

沒有登入
gif