Spectral tuning and after-effects in neural entrainment

Ablin P, Cardoso J-F, Gramfort A. Faster ICA under orthogonal constraint. In: Proceedings of the IEEE ICASSP. 2018a. https://doi.org/10.1109/ICASSP.2018.8461662.

Ablin P, Cardoso J-F, Gramfort A. Faster independent component analysis by preconditioning with Hessian approximations. IEEE Transactions on Signal Processing. 2018b;66(15):4040–9. https://doi.org/10.1109/TSP.2018.2844203.

Bach M. The Freiburg visual acuity test—automatic measurement of visual acuity. Optom Vis Sci. 1996;73(1):49–53. https://doi.org/10.1097/00006324-199601000-00008.

Article  CAS  PubMed  Google Scholar 

Barnett L, Seth AK. The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference. J Neurosci Methods. 2014;223:50–68.

Article  PubMed  Google Scholar 

Başar E, Bullock TH. Induced rhythms in the brain. Boston: Birkhäuser; 1992. https://doi.org/10.1007/978-1-4757-1281-0.

Book  Google Scholar 

Bauer A-KR, Debener S, Nobre AC. Synchronisation of neural oscillations and cross-modal influences. Trends Cogn Sci. 2020;24(6):481–95. https://doi.org/10.1016/j.tics.2020.03.003.

Article  PubMed  PubMed Central  Google Scholar 

Bigdely-Shamlo N, Mullen T, Kothe C, Su K-M, Robbins KA. The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Front Neuroinform. 2015. https://doi.org/10.3389/fninf.2015.00016.

Article  PubMed  PubMed Central  Google Scholar 

Bolger D, Coull JT, Schön D. Metrical rhythm implicitly orients attention in time as indexed by improved target detection and left inferior parietal activation. J Cogn Neurosci. 2014;26(3):593–605. https://doi.org/10.1162/jocn_a_00511.

Article  PubMed  Google Scholar 

Brainard DH. The psychophysics toolbox. Spat Vis. 1997;10(4):433–6.

Article  CAS  PubMed  Google Scholar 

Bressler SL, Seth AK. Wiener–Granger causality: a well established methodology. Neuroimage. 2011;58(2):323–9.

Article  PubMed  Google Scholar 

Calderone DJ, Lakatos P, Butler PD, Castellanos FX. Entrainment of neural oscillations as a modifiable substrate of attention. Trends Cogn Sci. 2014;18(6):300–9. https://doi.org/10.1016/j.tics.2014.02.005.

Article  PubMed  PubMed Central  Google Scholar 

Capilla A, Pazo-Alvarez P, Darriba A, Campo P, Gross J. Steady-state visual evoked potentials can be explained by temporal superposition of transient event-related responses. PLoS ONE. 2011;6(1): e14543. https://doi.org/10.1371/journal.pone.0014543.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Charalambous E, Djebbara Z. On natural attunement: shared rhythms between the brain and the environment. Neurosci Biobehav Rev. 2023;155: 105438. https://doi.org/10.1016/j.neubiorev.2023.105438.

Article  PubMed  Google Scholar 

Chota S, Marque P, VanRullen R. Occipital alpha-TMS causally modulates temporal order judgements: evidence for discrete temporal windows in vision. Neuroimage. 2021;237: 118173. https://doi.org/10.1016/j.neuroimage.2021.118173.

Article  PubMed  Google Scholar 

Clayton MS, Yeung N, Cohen Kadosh R. The many characters of visual alpha oscillations. Eur J Neurosci. 2018;48(7):2498–508. https://doi.org/10.1111/ejn.13747.

Article  PubMed  Google Scholar 

Clifford CW, Webster MA, Stanley GB, Stocker AA, Kohn A, Sharpee TO, Schwartz O. Visual adaptation: neural, psychological and computational aspects. Vis Res. 2007;47(25):3125.

Article  PubMed  Google Scholar 

Clifford CW, Wyatt AM, Arnold DH, Smith ST, Wenderoth P. Orthogonal adaptation improves orientation discrimination. Vis Res. 2001;41(2):151–9.

Article  CAS  PubMed  Google Scholar 

Coull JT, Nobre AC. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci. 1998;18(18):7426–35. https://doi.org/10.1523/JNEUROSCI.18-18-07426.1998.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Graaf TA, Gross J, Paterson G, Rusch T, Sack AT, Thut G. Alpha-band rhythms in visual task performance: phase-locking by rhythmic sensory stimulation. PLoS ONE. 2013;8(3): e60035. https://doi.org/10.1371/journal.pone.0060035.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009.

Article  PubMed  Google Scholar 

Delorme A, Mullen T, Kothe C, Akalin Acar Z, Bigdely-Shamlo N, Vankov A, Makeig S. EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing. Comput Intell Neurosci. 2011;2011:1–12. https://doi.org/10.1155/2011/130714.

Article  Google Scholar 

Doelling KB, Assaneo MF, Bevilacqua D, Pesaran B, Poeppel D. An oscillator model better predicts cortical entrainment to music. Proc Natl Acad Sci. 2019;116(20):10113–21. https://doi.org/10.1073/pnas.1816414116.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Drissi-Daoudi L, Doerig A, Herzog MH. Feature integration within discrete time windows. Nat Commun. 2019;10(1):4901. https://doi.org/10.1038/s41467-019-12919-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duecker K, Gutteling TP, Herrmann CS, Jensen O. No evidence for entrainment: endogenous gamma oscillations and rhythmic flicker responses coexist in visual cortex. J Neurosci. 2021;41(31):6684–98. https://doi.org/10.1523/JNEUROSCI.3134-20.2021.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Galambos R, Makeig S, Talmachoff PJ. A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci. 1981;78(4):2643–7. https://doi.org/10.1073/pnas.78.4.2643.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gallina J, Marsicano G, Romei V, Bertini C. Electrophysiological and behavioral effects of alpha-band sensory entrainment: neural mechanisms and clinical applications. Biomedicines. 2023;11(5):1399. https://doi.org/10.3390/biomedicines11051399.

Article  PubMed  PubMed Central  Google Scholar 

Giraud A-L, Poeppel D. Cortical oscillations and speech processing: emerging computational principles and operations. Nat Neurosci. 2012;15(4):511–7. https://doi.org/10.1038/nn.3063.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Glass L. Synchronization and rhythmic processes in physiology. Nature. 2001;410(6825):277–84. https://doi.org/10.1038/35065745.

Article  CAS  PubMed  Google Scholar 

Graaf TA, Duecker F. No effects of rhythmic visual stimulation on target discrimination: an online alpha entrainment experiment. Eur J Neurosci. 2021. https://doi.org/10.1111/ejn.15483.

Article  PubMed  PubMed Central  Google Scholar 

Granger CW. Investigating causal relations by econometric models and cross-spectral methods. Econometrica. 1969;37(3):424–38. https://doi.org/10.2307/1912791.

Gray MJ, Emmanouil TA. Individual alpha frequency increases during a task but is unchanged by alpha-band flicker. Psychophysiology. 2020. https://doi.org/10.1111/psyp.13480.

Article  PubMed  Google Scholar 

Gulbinaite R, van Viegen T, Wieling M, Cohen MX, VanRullen R. Individual alpha peak frequency predicts 10 Hz Flicker effects on selective attention. J Neurosci. 2017;37(42):10173–84. https://doi.org/10.1523/JNEUROSCI.1163-17.2017.

Article 

留言 (0)

沒有登入
gif