Long-term survival of asexual Zymoseptoria tritici spores in the environment

Sánchez-Vallet A, McDonald MC, Solomon PS, McDonald BA. Is Zymoseptoria tritici a hemibiotroph? Fungal Genet Biol. 2015;79:29–32.

Article  PubMed  Google Scholar 

Goodwin SB, Ben MS, Dhillon B, et al. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet. 2011. https://doi.org/10.1371/JOURNAL.PGEN.1002070.

Article  PubMed  PubMed Central  Google Scholar 

Brennan CJ, Benbow HR, Mullins E, Doohan FM. A review of the known unknowns in the early stages of septoria tritici blotch disease of wheat. Plant Pathol. 2019;68:1427–38.

Article  Google Scholar 

Fones HN, Eyles CJ, Kay W, Cowper J, Gurr SJ. A role for random, humidity-dependent epiphytic growth prior to invasion of wheat by Zymoseptoria tritici. Fungal Genet Biol. 2017;106:51–60.

Article  PubMed  PubMed Central  Google Scholar 

Francisco CS, Ma X, Zwyssig MM, McDonald BA. Palma-Guerrero J (2019) Morphological changes in response to environmental stresses in the fungal plant pathogen Zymoseptoria tritici. Scientific Reports. 2019;9(1):9642.

Article  PubMed  PubMed Central  Google Scholar 

Fones HN, Soanes D, Gurr SJ. Epiphytic proliferation of Zymoseptoria tritici isolates on resistant wheat leaves. Fungal Genet Biol. 2023;168:103822.

Article  PubMed  CAS  Google Scholar 

Haueisen J, Möller M, Eschenbrenner CJ, Grandaubert J, Seybold H, Adamiak H, Stukenbrock EH. Highly flexible infection programs in a specialized wheat pathogen. Ecol Evol. 2019;9:275–94.

Article  PubMed  Google Scholar 

Tyzack TE, Hacker C, Thomas G, Fones HN (2023) Biofilm formation in Zymoseptoria tritici. bioRxiv. 2023.07.26.550639

Fantozzi E, Kilaru S, Gurr SJ, Steinberg G. Asynchronous development of Zymoseptoria tritici infection in wheat. Fungal Genet Biol. 2021;146:103504.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zabka V, Stangl M, Bringmann G, Vogg G, Riederer M, Hildebrandt U. Host surface properties affect prepenetration processes in the barley powdery mildew fungus. New Phytol. 2008;177:251–63.

Article  PubMed  Google Scholar 

Talbot NJ. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol. 2003;57:177–202.

Article  PubMed  CAS  Google Scholar 

Steinberg G. Cell biology of Zymoseptoria tritici: pathogen cell organization and wheat infection. Fungal Genet Biol. 2015;79:17–23.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Duncan KE, Howard RJ. Cytological analysis of wheat infection by the leaf blotch pathogen Mycosphaerella graminicola. Mycol Res. 2000;104:1074–82.

Article  Google Scholar 

Kay WT, Fones HN, Gurr SJ. Rapid loss of virulence during submergence of Z. tritici asexual spores. Fungal Genet Biol. 2019;128:14–9.

Article  PubMed  Google Scholar 

Cunfer BM. Stagonospora and Septoria pathogens of cereals: the infection process. In: van Ginkel M, McNab A, Krupinsky J (eds) Septoria and Stagonospora diseases of cereals: a compilation of global research. CIMMYT. p 41. 1999.

Thomas G, Kay WT. Fones HN (2024) Life on a leaf: the epiphyte to pathogen continuum and interplay in the phyllosphere. BMC Biology. 2024;22(1):168.

Article  PubMed  PubMed Central  Google Scholar 

Fanning S, Mitchell AP. Fungal biofilms. PLoS Pathog. 2012;8:e1002585.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mitchell KF, Zarnowski R, Andes DR. Fungal super glue: the biofilm matrix and its composition, assembly, and functions. PLoS Pathog. 2016;12:e1005828.

Article  PubMed  PubMed Central  Google Scholar 

Wall G, Montelongo-Jauregui D, Vidal Bonifacio B, Lopez-Ribot JL, Uppuluri P. Candida albicans biofilm growth and dispersal: contributions to pathogenesis. Curr Opin Microbiol. 2019;52:1–6.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Shay R, Wiegand AA, Trail F. Biofilm formation and structure in the filamentous fungus Fusarium graminearum, a plant pathogen. Microbiol Spectr. 2022;10(4):e0017122.

Article  PubMed  Google Scholar 

Eyal Z, Schare A, Prescott JM, van Ginkel M. The Septoria diseases of wheat. International Maize and Wheat Improvement Center: Concepts and methods of disease management; 1987.

Google Scholar 

Cohen L, Eyal Z. The histology of processes associated with the infection of resistant and susceptible wheat cultivars with Septoria tritici. Plant Pathol. 1993;42:737–43.

Article  Google Scholar 

Keon J, Rudd JJ, Antoniw J, Skinner W, Hargreaves J, Hammond-Kosack K. Metabolic and stress adaptation by Mycosphaerella graminicola during sporulation in its host revealed through microarray transcription profiling. Mol Plant Pathol. 2005;6:527–40.

Article  PubMed  CAS  Google Scholar 

Kema GHJ, Yu DZ, Rijkenberg FHJ, Shaw MW, Baayen RP. Histology of the pathogenesis of Mycosphaerella graminicola in wheat. Phytopathology. 1996;86:777–86.

Article  Google Scholar 

Anantayanon J, Jeennor S, Panchanawaporn S, Chutrakul C, Laoteng K. Significance of two intracellular triacylglycerol lipases of Aspergillus oryzae in lipid mobilization: a perspective in industrial implication for microbial lipid production. Gene. 2021;793: 145745.

Article  PubMed  CAS  Google Scholar 

Gancedo C, Flores CL. The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Res. 2004;4:351–9.

Article  PubMed  CAS  Google Scholar 

Fillinger S, Chaveroche MK, van Dijck P, de Vries R, Ruijter G, Thevelein J, d’Enfert C. Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology (N Y). 2001;147:1851–62.

CAS  Google Scholar 

Fones HN, Steinberg G, Gurr SJ. Measurement of virulence in Zymoseptoria tritici through low inoculum-density assays. Fungal Genet Biol. 2015;79:89–93.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tang G, Fan Y, Li X, Tian R, Tang R, Xu L, Zhang J. Effects of leaf properties on the counts of microbes on the leaf surfaces of wheat, rye and triticale. FEMS Microbiol Ecol. 2023;99:1–10.

Article  Google Scholar 

Amos B, Aurrecoechea C, Barba M, et al. VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center. Nucleic Acids Res. 2022;50:D898–911.

Article  PubMed  CAS  Google Scholar 

Ajdidi A, Sheehan G, Kavanagh K. Exposure of Aspergillus fumigatus to atorvastatin leads to altered membrane permeability and induction of an oxidative stress response. J Fungi. 2020;42(6):42.

Article  Google Scholar 

Amarsaikhan N, Albrecht-Eckardt D, Sasse C, Braus GH, Ogel ZB, Kniemeyer O. Proteomic profiling of the antifungal drug response of Aspergillus fumigatus to voriconazole. Int J Med Microbiol. 2017;307:398–408.

Article  PubMed  CAS  Google Scholar 

Do JH, Yamaguchi R, Miyano S. Exploring temporal transcription regulation structure of Aspergillus fumigatus in heat shock by state space model. BMC Genomics. 2009;10:1–16.

Article  Google Scholar 

Bruno VM, Wang Z, Marjani SL, Euskirchen GM, Martin J, Sherlock G, Snyder M. Comprehensive annotation of the transcriptome of the human fungal pathogen Candida albicans using RNA-seq. Genome Res. 2010;20:1451–8.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Murphy RL, Andrianopoulos A, Davis MA, Hynes MJ. Identification of amdX, a new Cys-2-His-2 (C2H2) zinc-finger gene involved in the regulation of the amdS gene of Aspergillus nidulans. Mol Microbiol. 1997;23:591–602.

Article  PubMed  CAS  Google Scholar 

留言 (0)

沒有登入
gif