Sánchez-Vallet A, McDonald MC, Solomon PS, McDonald BA. Is Zymoseptoria tritici a hemibiotroph? Fungal Genet Biol. 2015;79:29–32.
Goodwin SB, Ben MS, Dhillon B, et al. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet. 2011. https://doi.org/10.1371/JOURNAL.PGEN.1002070.
Article PubMed PubMed Central Google Scholar
Brennan CJ, Benbow HR, Mullins E, Doohan FM. A review of the known unknowns in the early stages of septoria tritici blotch disease of wheat. Plant Pathol. 2019;68:1427–38.
Fones HN, Eyles CJ, Kay W, Cowper J, Gurr SJ. A role for random, humidity-dependent epiphytic growth prior to invasion of wheat by Zymoseptoria tritici. Fungal Genet Biol. 2017;106:51–60.
Article PubMed PubMed Central Google Scholar
Francisco CS, Ma X, Zwyssig MM, McDonald BA. Palma-Guerrero J (2019) Morphological changes in response to environmental stresses in the fungal plant pathogen Zymoseptoria tritici. Scientific Reports. 2019;9(1):9642.
Article PubMed PubMed Central Google Scholar
Fones HN, Soanes D, Gurr SJ. Epiphytic proliferation of Zymoseptoria tritici isolates on resistant wheat leaves. Fungal Genet Biol. 2023;168:103822.
Article PubMed CAS Google Scholar
Haueisen J, Möller M, Eschenbrenner CJ, Grandaubert J, Seybold H, Adamiak H, Stukenbrock EH. Highly flexible infection programs in a specialized wheat pathogen. Ecol Evol. 2019;9:275–94.
Tyzack TE, Hacker C, Thomas G, Fones HN (2023) Biofilm formation in Zymoseptoria tritici. bioRxiv. 2023.07.26.550639
Fantozzi E, Kilaru S, Gurr SJ, Steinberg G. Asynchronous development of Zymoseptoria tritici infection in wheat. Fungal Genet Biol. 2021;146:103504.
Article PubMed PubMed Central CAS Google Scholar
Zabka V, Stangl M, Bringmann G, Vogg G, Riederer M, Hildebrandt U. Host surface properties affect prepenetration processes in the barley powdery mildew fungus. New Phytol. 2008;177:251–63.
Talbot NJ. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol. 2003;57:177–202.
Article PubMed CAS Google Scholar
Steinberg G. Cell biology of Zymoseptoria tritici: pathogen cell organization and wheat infection. Fungal Genet Biol. 2015;79:17–23.
Article PubMed PubMed Central CAS Google Scholar
Duncan KE, Howard RJ. Cytological analysis of wheat infection by the leaf blotch pathogen Mycosphaerella graminicola. Mycol Res. 2000;104:1074–82.
Kay WT, Fones HN, Gurr SJ. Rapid loss of virulence during submergence of Z. tritici asexual spores. Fungal Genet Biol. 2019;128:14–9.
Cunfer BM. Stagonospora and Septoria pathogens of cereals: the infection process. In: van Ginkel M, McNab A, Krupinsky J (eds) Septoria and Stagonospora diseases of cereals: a compilation of global research. CIMMYT. p 41. 1999.
Thomas G, Kay WT. Fones HN (2024) Life on a leaf: the epiphyte to pathogen continuum and interplay in the phyllosphere. BMC Biology. 2024;22(1):168.
Article PubMed PubMed Central Google Scholar
Fanning S, Mitchell AP. Fungal biofilms. PLoS Pathog. 2012;8:e1002585.
Article PubMed PubMed Central CAS Google Scholar
Mitchell KF, Zarnowski R, Andes DR. Fungal super glue: the biofilm matrix and its composition, assembly, and functions. PLoS Pathog. 2016;12:e1005828.
Article PubMed PubMed Central Google Scholar
Wall G, Montelongo-Jauregui D, Vidal Bonifacio B, Lopez-Ribot JL, Uppuluri P. Candida albicans biofilm growth and dispersal: contributions to pathogenesis. Curr Opin Microbiol. 2019;52:1–6.
Article PubMed PubMed Central CAS Google Scholar
Shay R, Wiegand AA, Trail F. Biofilm formation and structure in the filamentous fungus Fusarium graminearum, a plant pathogen. Microbiol Spectr. 2022;10(4):e0017122.
Eyal Z, Schare A, Prescott JM, van Ginkel M. The Septoria diseases of wheat. International Maize and Wheat Improvement Center: Concepts and methods of disease management; 1987.
Cohen L, Eyal Z. The histology of processes associated with the infection of resistant and susceptible wheat cultivars with Septoria tritici. Plant Pathol. 1993;42:737–43.
Keon J, Rudd JJ, Antoniw J, Skinner W, Hargreaves J, Hammond-Kosack K. Metabolic and stress adaptation by Mycosphaerella graminicola during sporulation in its host revealed through microarray transcription profiling. Mol Plant Pathol. 2005;6:527–40.
Article PubMed CAS Google Scholar
Kema GHJ, Yu DZ, Rijkenberg FHJ, Shaw MW, Baayen RP. Histology of the pathogenesis of Mycosphaerella graminicola in wheat. Phytopathology. 1996;86:777–86.
Anantayanon J, Jeennor S, Panchanawaporn S, Chutrakul C, Laoteng K. Significance of two intracellular triacylglycerol lipases of Aspergillus oryzae in lipid mobilization: a perspective in industrial implication for microbial lipid production. Gene. 2021;793: 145745.
Article PubMed CAS Google Scholar
Gancedo C, Flores CL. The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Res. 2004;4:351–9.
Article PubMed CAS Google Scholar
Fillinger S, Chaveroche MK, van Dijck P, de Vries R, Ruijter G, Thevelein J, d’Enfert C. Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology (N Y). 2001;147:1851–62.
Fones HN, Steinberg G, Gurr SJ. Measurement of virulence in Zymoseptoria tritici through low inoculum-density assays. Fungal Genet Biol. 2015;79:89–93.
Article PubMed PubMed Central CAS Google Scholar
Tang G, Fan Y, Li X, Tian R, Tang R, Xu L, Zhang J. Effects of leaf properties on the counts of microbes on the leaf surfaces of wheat, rye and triticale. FEMS Microbiol Ecol. 2023;99:1–10.
Amos B, Aurrecoechea C, Barba M, et al. VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center. Nucleic Acids Res. 2022;50:D898–911.
Article PubMed CAS Google Scholar
Ajdidi A, Sheehan G, Kavanagh K. Exposure of Aspergillus fumigatus to atorvastatin leads to altered membrane permeability and induction of an oxidative stress response. J Fungi. 2020;42(6):42.
Amarsaikhan N, Albrecht-Eckardt D, Sasse C, Braus GH, Ogel ZB, Kniemeyer O. Proteomic profiling of the antifungal drug response of Aspergillus fumigatus to voriconazole. Int J Med Microbiol. 2017;307:398–408.
Article PubMed CAS Google Scholar
Do JH, Yamaguchi R, Miyano S. Exploring temporal transcription regulation structure of Aspergillus fumigatus in heat shock by state space model. BMC Genomics. 2009;10:1–16.
Bruno VM, Wang Z, Marjani SL, Euskirchen GM, Martin J, Sherlock G, Snyder M. Comprehensive annotation of the transcriptome of the human fungal pathogen Candida albicans using RNA-seq. Genome Res. 2010;20:1451–8.
Article PubMed PubMed Central CAS Google Scholar
Murphy RL, Andrianopoulos A, Davis MA, Hynes MJ. Identification of amdX, a new Cys-2-His-2 (C2H2) zinc-finger gene involved in the regulation of the amdS gene of Aspergillus nidulans. Mol Microbiol. 1997;23:591–602.
留言 (0)