Barbon A, Magri C (2020) RNA editing and modifications in mood disorders. Genes (Basel) 11(8):872. https://doi.org/10.3390/genes11080872
Zhang L, Hou C, Chen C, Guo Y, Yuan W, Yin D, Liu J, Sun Z (2020) The role of N(6)-methyladenosine (m(6)A) modification in the regulation of circRNAs. Mol Cancer 19(1):105. https://doi.org/10.1186/s12943-020-01224-3
Article PubMed PubMed Central Google Scholar
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T et al (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7(12):885–887. https://doi.org/10.1038/nchembio.687
Article PubMed PubMed Central Google Scholar
Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C, Chen Y (2021) The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther 6(1):74. https://doi.org/10.1038/s41392-020-00450-x
Article PubMed PubMed Central Google Scholar
Zaccara S, Ries RJ, Jaffrey SR (2019) Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol 20(10):608–624. https://doi.org/10.1038/s41580-019-0168-5
Boulias K, Greer EL (2023) Biological roles of adenine methylation in RNA. Nat Rev Genet 24(3):143–160. https://doi.org/10.1038/s41576-022-00534-0
Louloupi A, Ntini E, Conrad T, Ørom UAV (2018) Transient N-6-methyladenosine transcriptome sequencing reveals a regulatory role of m6A in splicing efficiency. Cell Rep 23(12):3429–3437. https://doi.org/10.1016/j.celrep.2018.05.077
Zhao X, Yang Y, Sun BF, Shi Y, Yang X, Xiao W, Hao YJ, Ping XL et al (2014) FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res 24(12):1403–1419. https://doi.org/10.1038/cr.2014.151
Article PubMed PubMed Central Google Scholar
Lesbirel S, Viphakone N, Parker M, Parker J, Heath C, Sudbery I, Wilson SA (2018) The m(6)A-methylase complex recruits TREX and regulates mRNA export. Sci Rep 8(1):13827. https://doi.org/10.1038/s41598-018-32310-8
Article PubMed PubMed Central Google Scholar
Covelo-Molares H, Obrdlik A, Poštulková I, Dohnálková M, Gregorová P, Ganji R, Potěšil D, Gawriyski L, Varjosalo M, Vaňáčová Š (2021) The comprehensive interactomes of human adenosine RNA methyltransferases and demethylases reveal distinct functional and regulatory features. Nucleic Acids Res 49(19):10895–10910. https://doi.org/10.1093/nar/gkab900
Article PubMed PubMed Central Google Scholar
Roundtree IA, Luo GZ, Zhang Z, Wang X, Zhou T, Cui Y, Sha J, Huang X et al (2017) YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife 6:e31311. https://doi.org/10.7554/eLife.31311
Viegas IJ, de Macedo JP, Serra L, De Niz M, Temporão A, Silva Pereira S, Mirza AH, Bergstrom E et al (2022) N(6)-methyladenosine in poly(A) tails stabilize VSG transcripts. Nature 604(7905):362–370. https://doi.org/10.1038/s41586-022-04544-0
Article PubMed PubMed Central Google Scholar
Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC (2014) N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 16(2):191–198. https://doi.org/10.1038/ncb2902
Article PubMed PubMed Central Google Scholar
Zhang C, Chen Y, Sun B, Wang L, Yang Y, Ma D, Lv J, Heng J et al (2017) m(6)A modulates haematopoietic stem and progenitor cell specification. Nature 549(7671):273–276. https://doi.org/10.1038/nature23883
Xu H, Dzhashiashvili Y, Shah A, Kunjamma RB, Weng YL, Elbaz B, Fei Q, Jones JS et al (2020) m(6)A mRNA methylation is essential for oligodendrocyte maturation and CNS myelination. Neuron 105(2):293-309.e295. https://doi.org/10.1016/j.neuron.2019.12.013
Livneh I, Moshitch-Moshkovitz S, Amariglio N, Rechavi G, Dominissini D (2020) The m(6)A epitranscriptome: transcriptome plasticity in brain development and function. Nat Rev Neurosci 21(1):36–51. https://doi.org/10.1038/s41583-019-0244-z
Tian M, Mao L, Zhang L (2022) Crosstalk among N6-methyladenosine modification and RNAs in central nervous system injuries. Front Cell Neurosci 16:1013450. https://doi.org/10.3389/fncel.2022.1013450
Article PubMed PubMed Central Google Scholar
Zhang N, Ding C, Zuo Y, Peng Y, Zuo L (2022) N6-methyladenosine and neurological diseases. Mol Neurobiol 59(3):1925–1937. https://doi.org/10.1007/s12035-022-02739-0
Wu R, Li A, Sun B, Sun JG, Zhang J, Zhang T, Chen Y, Xiao Y et al (2019) A novel m(6)A reader Prrc2a controls oligodendroglial specification and myelination. Cell Res 29(1):23–41. https://doi.org/10.1038/s41422-018-0113-8
Malhi GS, Mann JJ (2018) Depression. Lancet 392(10161):2299–2312. https://doi.org/10.1016/s0140-6736(18)31948-2
Bollen J, Trick L, Llewellyn D, Dickens C (2017) The effects of acute inflammation on cognitive functioning and emotional processing in humans: a systematic review of experimental studies. J Psychosom Res 94:47–55. https://doi.org/10.1016/j.jpsychores.2017.01.002
Boldrini M, Santiago AN, Hen R, Dwork AJ, Rosoklija GB, Tamir H, Arango V, John Mann J (2013) Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. Neuropsychopharmacology 38(6):1068–1077. https://doi.org/10.1038/npp.2013.5
Article PubMed PubMed Central Google Scholar
Schmaal L, Hibar DP, Sämann PG, Hall GB, Baune BT, Jahanshad N, Cheung JW, van Erp TGM et al (2017) Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol Psychiatry 22(6):900–909. https://doi.org/10.1038/mp.2016.60
Kraus C, Castrén E, Kasper S, Lanzenberger R (2017) Serotonin and neuroplasticity - links between molecular, functional and structural pathophysiology in depression. Neurosci Biobehav Rev 77:317–326. https://doi.org/10.1016/j.neubiorev.2017.03.007
Ripke S, Wray NR, Lewis CM, Hamilton SP, Weissman MM, Breen G, Byrne EM, Blackwood DH et al (2013) A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry 18(4):497–511. https://doi.org/10.1038/mp.2012.21
Beurel E, Toups M, Nemeroff CB (2020) The bidirectional relationship of depression and inflammation: double trouble. Neuron 107(2):234–256. https://doi.org/10.1016/j.neuron.2020.06.002
Article PubMed PubMed Central Google Scholar
Howren MB, Lamkin DM, Suls J (2009) Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 71(2):171–186. https://doi.org/10.1097/PSY.0b013e3181907c1b
Kiecolt-Glaser JK, Derry HM, Fagundes CP (2015) Inflammation: depression fans the flames and feasts on the heat. Am J Psychiatry 172(11):1075–1091. https://doi.org/10.1176/appi.ajp.2015.15020152
Article PubMed PubMed Central Google Scholar
Liu Y, Ho RC, Mak A (2012) Interleukin (IL)-6, tumour necrosis factor alpha (TNF-α) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. J Affect Disord 139(3):230–239. https://doi.org/10.1016/j.jad.2011.08.003
Powell TR, Smith RG, Hackinger S, Schalkwyk LC, Uher R, McGuffin P, Mill J, Tansey KE (2013) DNA methylation in interleukin-11 predicts clinical response to antidepressants in GENDEP. Transl Psychiatry 3(9):e300. https://doi.org/10.1038/tp.2013.73
留言 (0)