Mechanism of N6-Methyladenosine Modification in the Pathogenesis of Depression

Barbon A, Magri C (2020) RNA editing and modifications in mood disorders. Genes (Basel) 11(8):872. https://doi.org/10.3390/genes11080872

Article  PubMed  Google Scholar 

Zhang L, Hou C, Chen C, Guo Y, Yuan W, Yin D, Liu J, Sun Z (2020) The role of N(6)-methyladenosine (m(6)A) modification in the regulation of circRNAs. Mol Cancer 19(1):105. https://doi.org/10.1186/s12943-020-01224-3

Article  PubMed  PubMed Central  Google Scholar 

Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T et al (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7(12):885–887. https://doi.org/10.1038/nchembio.687

Article  PubMed  PubMed Central  Google Scholar 

Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C, Chen Y (2021) The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther 6(1):74. https://doi.org/10.1038/s41392-020-00450-x

Article  PubMed  PubMed Central  Google Scholar 

Zaccara S, Ries RJ, Jaffrey SR (2019) Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol 20(10):608–624. https://doi.org/10.1038/s41580-019-0168-5

Article  PubMed  Google Scholar 

Boulias K, Greer EL (2023) Biological roles of adenine methylation in RNA. Nat Rev Genet 24(3):143–160. https://doi.org/10.1038/s41576-022-00534-0

Article  PubMed  Google Scholar 

Louloupi A, Ntini E, Conrad T, Ørom UAV (2018) Transient N-6-methyladenosine transcriptome sequencing reveals a regulatory role of m6A in splicing efficiency. Cell Rep 23(12):3429–3437. https://doi.org/10.1016/j.celrep.2018.05.077

Article  PubMed  Google Scholar 

Zhao X, Yang Y, Sun BF, Shi Y, Yang X, Xiao W, Hao YJ, Ping XL et al (2014) FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res 24(12):1403–1419. https://doi.org/10.1038/cr.2014.151

Article  PubMed  PubMed Central  Google Scholar 

Lesbirel S, Viphakone N, Parker M, Parker J, Heath C, Sudbery I, Wilson SA (2018) The m(6)A-methylase complex recruits TREX and regulates mRNA export. Sci Rep 8(1):13827. https://doi.org/10.1038/s41598-018-32310-8

Article  PubMed  PubMed Central  Google Scholar 

Covelo-Molares H, Obrdlik A, Poštulková I, Dohnálková M, Gregorová P, Ganji R, Potěšil D, Gawriyski L, Varjosalo M, Vaňáčová Š (2021) The comprehensive interactomes of human adenosine RNA methyltransferases and demethylases reveal distinct functional and regulatory features. Nucleic Acids Res 49(19):10895–10910. https://doi.org/10.1093/nar/gkab900

Article  PubMed  PubMed Central  Google Scholar 

Roundtree IA, Luo GZ, Zhang Z, Wang X, Zhou T, Cui Y, Sha J, Huang X et al (2017) YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife 6:e31311. https://doi.org/10.7554/eLife.31311

Viegas IJ, de Macedo JP, Serra L, De Niz M, Temporão A, Silva Pereira S, Mirza AH, Bergstrom E et al (2022) N(6)-methyladenosine in poly(A) tails stabilize VSG transcripts. Nature 604(7905):362–370. https://doi.org/10.1038/s41586-022-04544-0

Article  PubMed  PubMed Central  Google Scholar 

Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC (2014) N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 16(2):191–198. https://doi.org/10.1038/ncb2902

Article  PubMed  PubMed Central  Google Scholar 

Zhang C, Chen Y, Sun B, Wang L, Yang Y, Ma D, Lv J, Heng J et al (2017) m(6)A modulates haematopoietic stem and progenitor cell specification. Nature 549(7671):273–276. https://doi.org/10.1038/nature23883

Article  PubMed  Google Scholar 

Xu H, Dzhashiashvili Y, Shah A, Kunjamma RB, Weng YL, Elbaz B, Fei Q, Jones JS et al (2020) m(6)A mRNA methylation is essential for oligodendrocyte maturation and CNS myelination. Neuron 105(2):293-309.e295. https://doi.org/10.1016/j.neuron.2019.12.013

Article  PubMed  Google Scholar 

Livneh I, Moshitch-Moshkovitz S, Amariglio N, Rechavi G, Dominissini D (2020) The m(6)A epitranscriptome: transcriptome plasticity in brain development and function. Nat Rev Neurosci 21(1):36–51. https://doi.org/10.1038/s41583-019-0244-z

Article  PubMed  Google Scholar 

Tian M, Mao L, Zhang L (2022) Crosstalk among N6-methyladenosine modification and RNAs in central nervous system injuries. Front Cell Neurosci 16:1013450. https://doi.org/10.3389/fncel.2022.1013450

Article  PubMed  PubMed Central  Google Scholar 

Zhang N, Ding C, Zuo Y, Peng Y, Zuo L (2022) N6-methyladenosine and neurological diseases. Mol Neurobiol 59(3):1925–1937. https://doi.org/10.1007/s12035-022-02739-0

Article  PubMed  Google Scholar 

Wu R, Li A, Sun B, Sun JG, Zhang J, Zhang T, Chen Y, Xiao Y et al (2019) A novel m(6)A reader Prrc2a controls oligodendroglial specification and myelination. Cell Res 29(1):23–41. https://doi.org/10.1038/s41422-018-0113-8

Article  PubMed  Google Scholar 

Malhi GS, Mann JJ (2018) Depression. Lancet 392(10161):2299–2312. https://doi.org/10.1016/s0140-6736(18)31948-2

Article  PubMed  Google Scholar 

Bollen J, Trick L, Llewellyn D, Dickens C (2017) The effects of acute inflammation on cognitive functioning and emotional processing in humans: a systematic review of experimental studies. J Psychosom Res 94:47–55. https://doi.org/10.1016/j.jpsychores.2017.01.002

Article  PubMed  Google Scholar 

Boldrini M, Santiago AN, Hen R, Dwork AJ, Rosoklija GB, Tamir H, Arango V, John Mann J (2013) Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. Neuropsychopharmacology 38(6):1068–1077. https://doi.org/10.1038/npp.2013.5

Article  PubMed  PubMed Central  Google Scholar 

Schmaal L, Hibar DP, Sämann PG, Hall GB, Baune BT, Jahanshad N, Cheung JW, van Erp TGM et al (2017) Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol Psychiatry 22(6):900–909. https://doi.org/10.1038/mp.2016.60

Article  PubMed  Google Scholar 

Kraus C, Castrén E, Kasper S, Lanzenberger R (2017) Serotonin and neuroplasticity - links between molecular, functional and structural pathophysiology in depression. Neurosci Biobehav Rev 77:317–326. https://doi.org/10.1016/j.neubiorev.2017.03.007

Article  PubMed  Google Scholar 

Ripke S, Wray NR, Lewis CM, Hamilton SP, Weissman MM, Breen G, Byrne EM, Blackwood DH et al (2013) A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry 18(4):497–511. https://doi.org/10.1038/mp.2012.21

Article  PubMed  Google Scholar 

Beurel E, Toups M, Nemeroff CB (2020) The bidirectional relationship of depression and inflammation: double trouble. Neuron 107(2):234–256. https://doi.org/10.1016/j.neuron.2020.06.002

Article  PubMed  PubMed Central  Google Scholar 

Howren MB, Lamkin DM, Suls J (2009) Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 71(2):171–186. https://doi.org/10.1097/PSY.0b013e3181907c1b

Article  PubMed  Google Scholar 

Kiecolt-Glaser JK, Derry HM, Fagundes CP (2015) Inflammation: depression fans the flames and feasts on the heat. Am J Psychiatry 172(11):1075–1091. https://doi.org/10.1176/appi.ajp.2015.15020152

Article  PubMed  PubMed Central  Google Scholar 

Liu Y, Ho RC, Mak A (2012) Interleukin (IL)-6, tumour necrosis factor alpha (TNF-α) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. J Affect Disord 139(3):230–239. https://doi.org/10.1016/j.jad.2011.08.003

Article  PubMed  Google Scholar 

Powell TR, Smith RG, Hackinger S, Schalkwyk LC, Uher R, McGuffin P, Mill J, Tansey KE (2013) DNA methylation in interleukin-11 predicts clinical response to antidepressants in GENDEP. Transl Psychiatry 3(9):e300. https://doi.org/10.1038/tp.2013.73

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif