Morin Ameliorates Lipopolysaccharides-Induced Sepsis-Associated Encephalopathy and Cognitive Impairment in Albino Mice

Hong Y, Chen P, Gao J, Lin Y, Chen L, Shang X (2023) Sepsis-associated encephalopathy: from pathophysiology to clinical management. Int Immunopharmacol 124:110800. https://doi.org/10.1016/j.intimp.2023.110800

Article  PubMed  CAS  Google Scholar 

Catarina AV, Branchini G, Bettoni L, De Oliveira JR, Nunes FB (2021) Sepsis-associated encephalopathy: from pathophysiology to progress in experimental studies. Mol Neurobiol 58(6):2770–2779. https://doi.org/10.1007/s12035-021-02303-2

Article  PubMed  CAS  Google Scholar 

Fajgenbaum DC, June CH (2020) Cytokine storm. N Engl J Med 383(23):2255–2273. https://doi.org/10.1056/nejmra2026131

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yang K, Chen J, Wang T, Zhang Y (2022) Pathogenesis of sepsis-associated encephalopathy: more than blood–brain barrier dysfunction. Mol Biol Rep 49(10):10091–10099. https://doi.org/10.1007/s11033-022-07592-x

Article  PubMed  CAS  Google Scholar 

Yu Z, Shi H, Zhang J, Ma C, He C, Yang F, Zhao L (2023) Role of microglia in sepsis-associated encephalopathy pathogenesis: an update. Shock 10–1097. https://doi.org/10.1097/shk.0000000000002296

Hsieh CY, Jayakumar T, Lin KC, Yen TL, Hsia CW, Huang WC, Joen JR, Hsia CH (2023) Morin hydrate suppresses lipoteichoic acid-induced oxidative stress-mediated inflammatory events in macrophages via augmenting Nrf2/HO-1 and antioxidant defense molecules. Eur J Inflamm 21:1721727X231199414. https://doi.org/10.1177/1721727X231199414

Article  CAS  Google Scholar 

Salem HA, Elsherbiny N, Alzahrani S, Alshareef HM, Abd Elmageed ZY, Ajwah SM, Abu-Elfotuh K (2022) Neuroprotective effect of morin hydrate against attention-deficit/hyperactivity disorder (ADHD) induced by MSG and/or protein malnutrition in rat pups: Effect on oxidative/monoamines/inflammatory balance and apoptosis. Pharmaceuticals 15(8):1012. https://doi.org/10.3390/ph15081012

Article  PubMed  PubMed Central  CAS  Google Scholar 

Du Y, Qu J, Zhang W, Bai M, Zhou Q, Zhang Z, Li Z, Miao J (2016) Morin reverses neuropathological and cognitive impairments in APPswe/PS1dE9 mice by targeting multiple pathogenic mechanisms. Neuropharmacology 108:1–13. https://doi.org/10.1016/j.neuropharm.2016.04.008

Article  PubMed  CAS  Google Scholar 

Bachewal P, Gundu C, Yerra VG, Kalvala AK, Areti A, Kumar A (2017) Morin exerts neuroprotection via attenuation of ROS induced oxidative damage and neuroinflammation in experimental diabetic neuropathy. BioFactors 44(2):109–122. https://doi.org/10.1002/biof.1397

Article  PubMed  CAS  Google Scholar 

Zhang ZT, Cao XB, Xiong N, Wang HC, Huang JS, Sun SG, Wang T (2010) Morin exerts neuroprotective actions in Parkinson disease models in vitro and in vivo. Acta Pharmacol Sin 31(8):900. https://doi.org/10.1038/aps.2010.77

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen Y, Li Y, Xu H, Li G, Ma Y, Pang YJ (2017) Morin mitigates oxidative stress, apoptosis and inflammation in cerebral ischemic rats. Afr J Tradit Complement Altern Med 14(2):348–355. https://doi.org/10.21010/ajtcam.v14i2.36

Article  PubMed  PubMed Central  CAS  Google Scholar 

Çelik H, Kucukler S, Çomaklı S, Özdemir S, Caglayan C, Yardım A, Kandemir FM (2020) Morin attenuates ifosfamide-induced neurotoxicity in rats via suppression of oxidative stress, neuroinflammation and neuronal apoptosis. Neurotoxicology 76:126–137. https://doi.org/10.1016/j.neuro.2019.11.004

Article  PubMed  CAS  Google Scholar 

Hassan MAM, Gad AM, Menze ET, Badary OA, El-Naga RN (2020) Protective effects of morin against depressive-like behavior prompted by chronic unpredictable mild stress in rats: possible role of inflammasome-related pathways. Biochem Pharmacol 180:114140. https://doi.org/10.1016/j.brainres.2015.10.049

Article  PubMed  CAS  Google Scholar 

Cho YM, Onodera H, Ueda M, Imai T, Hirose M (2006) A 13-week subchronic toxicity study of dietary administered morin in F344 rats. FCT 44(6): 891–897. https://doi.org/10.1016/j.fct.2005.12.002

Tian Q, Fan X, Ma J, Han Y, Li D, Jiang S, Zhang F, Guang H, Shan X, Chen R, Wang P, Wang Q, Yang J, Wang Y, Hu L, Shentu Y, Gong Y, Fan J (2020) Resveratrol ameliorates lipopolysaccharide-induced anxiety-like behavior by attenuating YAP-mediated neuro-inflammation and promoting hippocampal autophagy in mice. Toxico Appl Pharmacol 408:115261. https://doi.org/10.1016/j.taap.2020.115261

Article  CAS  Google Scholar 

KV A, Madhana RM, Kasala ER, Samudrala PK, Lahkar M, Gogoi R (2016) Morin hydrate mitigates cisplatin-induced renal and hepatic injury by impeding oxidative/nitrosative stress and inflammation in mice. J Biochem Mol Toxicol 30(12):571–579

Article  Google Scholar 

Fan K, Wu X, Fan B, Li N, Lin Y, Yao Y, Ma J (2012) Up-regulation of microglial cathepsin C expression and activity in lipopolysaccharide induced neuroinfammation. J Neuroinfamm 9:96. https://doi.org/10.1186/1742-2094-9-96

Article  CAS  Google Scholar 

Pellow S, File SE (1986) Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol Biochem Behav 24(3):525–529. https://doi.org/10.1016/0091-3057(86)90552-6

Article  PubMed  CAS  Google Scholar 

Seibenhener ML, Wooten MC (2015) Use of the open field maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp 96:e52434. https://doi.org/10.3791/52434

Article  Google Scholar 

Lueptow LM (2017) Novel object recognition test for the investigation of learning and memory in mice. J Vis Exp 126:e55718. https://doi.org/10.3791/55718

Google Scholar 

Xu XE, Liu L, Wang YC, Wang CT, Zheng Q, Liu QX, Li ZF, Bai XJ, Liu XH (2019) Caspase-1 inhibitor exerts brain-protective effects against sepsis-associated encephalopathy and cognitive impairments in a mouse model of sepsis. Brain Behav Immun 80:859–870. https://doi.org/10.1016/j.bbi.2019.05.038

Article  PubMed  CAS  Google Scholar 

Spowart-Manning L, Van Der Staay FJ (2004) The T-maze continuous alternation task for assessing the effects of putative cognition enhancers in the mouse. Behav Brain Res 151(1–2):37–46. https://doi.org/10.1016/j.bbr.2003.08.004

Article  PubMed  CAS  Google Scholar 

Bancroft JD, Gamble M (2008) Theory and practice of histological techniques. Elsevier health sciences. https://doi.org/10.1097/NEN.0b013e31817e2933

Butler JL, Barham BJ, Heidenreich BA (2019) Comparison of indirect peroxidase and avidin-biotin-peroxidase complex (ABC) immunohistochemical staining procedures for c-fos in rat’s brain. J Anat 234(6):936–942. https://doi.org/10.1111/joa.12967

Article  PubMed  PubMed Central  CAS  Google Scholar 

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, Poll T, Vincent JL, Angus DC (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315(8):801–810. https://doi.org/10.1001/jama.2016.0287

Article  PubMed  PubMed Central  CAS  Google Scholar 

Annane D, Sharshar T (2015) Cognitive decline after sepsis. Lancet Respir Med 3(1):61–69. https://doi.org/10.1016/S2213-2600(14)70246-2

Article  PubMed  CAS  Google Scholar 

Yu Y, Feng J, Lian N, Yang M, Xie K, Wang G, Wang C, Yu Y (2020) Hydrogen gas alleviates blood-brain barrier impairment and cognitive dysfunction of septic mice in an Nrf2-dependent pathway. Int Immunopharmacol 85:106585. https://doi.org/10.1016/j.intimp.2020.106585

Article  PubMed  CAS  Google Scholar 

Wang P, Hu Y, Yao D, Li Y (2018) Omi/HtrA2 regulates a mitochondria-dependent apoptotic pathway in a murine model of septic encephalopathy. Cell Physiol Biochem 49(6):2163–2173. https://doi.org/10.1159/000493819

Article  PubMed  CAS  Google Scholar 

Xie K, Zhang Y, Wang Y, Meng X, Wang Y, Yu Y, Chen H (2020) Hydrogen attenuates sepsis-associated encephalopathy by NRF2 mediated NLRP3 pathway inactivation. Inflamm Res 69(7):697–710. https://doi.org/10.1007/s00011-020-01347-9

Article  PubMed  CAS  Google Scholar 

Toro-Pérez J, Rodrigo R (2021) Contribution of oxidative stress in the mechanisms of postoperative complications and multiple organ dysfunction syndrome. Redox Rep 26(1):35–44. https://doi.org/10.1080/13510002.2021.1891808

Article  PubMed 

留言 (0)

沒有登入
gif