Improved prognostication of overall survival after radiotherapy in lung cancer patients by an interpretable machine learning model integrating lung and tumor radiomics and clinical parameters

Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics, 2023. CA A Cancer J Clin 73(1):17–48. https://doi.org/10.3322/caac.21763

Article  Google Scholar 

Galluzzi L, Aryankalayil MJ, Coleman CN, Formenti SC (2023) Emerging evidence for adapting radiotherapy to immunotherapy. Nat Rev Clin Oncol 20(8):543–557. https://doi.org/10.1038/s41571-023-00782-x

Article  PubMed  Google Scholar 

Pichert MD, Canavan ME, Maduka RC et al (2022) Immunotherapy after chemotherapy and radiation for clinical stage III lung cancer. JAMA Netw Open 5(8):e2224478. https://doi.org/10.1001/jamanetworkopen.2022.24478

Article  PubMed  PubMed Central  Google Scholar 

Park CJ, Choi SH, Kim D et al (2023) MRI radiomics may predict early tumor recurrence in patients with sinonasal squamous cell carcinoma. Eur Radiol. https://doi.org/10.1007/s00330-023-10389-6

Article  PubMed  PubMed Central  Google Scholar 

Shi Z, Huang X, Cheng Z et al (2023) MRI-based quantification of intratumoral heterogeneity for predicting treatment response to neoadjuvant chemotherapy in breast cancer. Radiology 308(1):e222830. https://doi.org/10.1148/radiol.222830

Article  PubMed  Google Scholar 

Huang W, Xiong W, Tang L et al (2023) Non-invasive CT imaging biomarker to predict immunotherapy response in gastric cancer: a multicenter study. J Immunother Cancer 11(11):e007807. https://doi.org/10.1136/jitc-2023-007807

Article  PubMed  PubMed Central  Google Scholar 

Wu S, Zhan W, Liu L et al (2023) Pretreatment radiomic biomarker for immunotherapy responder prediction in stage IB-IV NSCLC (LCDigital-IO study): a multicenter retrospective study. J Immunother Cancer 11(10):e007369. https://doi.org/10.1136/jitc-2023-007369

Article  PubMed  PubMed Central  Google Scholar 

Liu T, Dong D, Zhao X et al (2023) Radiomic signatures reveal multiscale intratumor heterogeneity associated with tissue tolerance and survival in re-irradiated nasopharyngeal carcinoma: a multicenter study. BMC Med 21(1):464. https://doi.org/10.1186/s12916-023-03164-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Z, Wang S, Dong D et al (2019) The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges. Theranostics 9(5):1303–1322. https://doi.org/10.7150/thno.30309

Article  PubMed  PubMed Central  Google Scholar 

Zhao J, He Y, Yang X et al (2023) Assessing treatment outcomes of chemoimmunotherapy in extensive-stage small cell lung cancer: an integrated clinical and radiomics approach. J Immunother Cancer 11(9):e007492. https://doi.org/10.1136/jitc-2023-007492

Article  PubMed  PubMed Central  Google Scholar 

Dercle L, Fronheiser M, Rizvi NA et al (2023) Baseline radiomic signature to estimate overall survival in patients with NSCLC. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer 18(5):587–598. https://doi.org/10.1016/j.jtho.2022.12.019

Article  CAS  Google Scholar 

Hindocha S, Charlton TG, Linton-Reid K et al (2022) Gross tumour volume radiomics for prognostication of recurrence & death following radical radiotherapy for NSCLC. NPJ Precis Oncol 6(1):77. https://doi.org/10.1038/s41698-022-00322-3

Article  PubMed  PubMed Central  Google Scholar 

Mu W, Jiang L, Shi Y et al (2021) Non-invasive measurement of PD-L1 status and prediction of immunotherapy response using deep learning of PET/CT images. J Immunother Cancer 9(6):e002118. https://doi.org/10.1136/jitc-2020-002118

Article  PubMed  PubMed Central  Google Scholar 

Huang B, Sollee J, Luo YH et al (2022) Prediction of lung malignancy progression and survival with machine learning based on pre-treatment FDG-PET/CT. EBioMedicine 82:104127. https://doi.org/10.1016/j.ebiom.2022.104127

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khorrami M, Khunger M, Zagouras A et al (2019) Combination of peri- and intratumoral radiomic features on baseline CT scans predicts response to chemotherapy in lung adenocarcinoma. Radiol Artif Intell 1(2):e180012. https://doi.org/10.1148/ryai.2019180012

Article  PubMed  Google Scholar 

Mauclet C, Dupont MV, Roelandt K et al (2023) Treatment and prognosis of patients with lung cancer and combined interstitial lung disease. Cancers (Basel) 15(15):3876. https://doi.org/10.3390/cancers15153876

Article  CAS  PubMed  Google Scholar 

Lundberg SM, Lee SI (2017) A unified approach to interpreting model predictions. Advances in neural information processing systems, vol 30. Curran Associates Inc., Scotland

Google Scholar 

Goyal K, Dumancic S, Blockeel H (2020) Feature interactions in XGBoost. arXiv e-prints. Published online July 1. https://doi.org/10.48550/arXiv.2007.05758

Aerts HJWL, Wee L, Rios Velazquez E et al (2014) Data from NSCLC-radiomics (version 4). Cancer Imaging Arch. https://doi.org/10.7937/K9/TCIA.2015.PF0M9REI

Article  Google Scholar 

Aerts HJWL, Velazquez ER, Leijenaar RTH et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006. https://doi.org/10.1038/ncomms5006

Article  CAS  PubMed  Google Scholar 

Clark K, Vendt B, Smith K et al (2013) The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26(6):1045–1057. https://doi.org/10.1007/s10278-013-9622-7

Article  PubMed  PubMed Central  Google Scholar 

Bradley JD, Forster K (2018) Data from NSCLC-cetuximab. Cancer Imaging Arch. https://doi.org/10.7937/TCIA.2018.jze75u7v

Article  Google Scholar 

Shi Z, Zhang Z, Liu Z et al (2022) Methodological quality of machine learning-based quantitative imaging analysis studies in esophageal cancer: a systematic review of clinical outcome prediction after concurrent chemoradiotherapy. Eur J Nucl Med Mol Imaging 49(8):2462–2481. https://doi.org/10.1007/s00259-021-05658-9

Article  PubMed  Google Scholar 

Hofmanninger J, Prayer F, Pan J, Röhrich S, Prosch H, Langs G (2020) Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem. Eur Radiol Exp 4(1):50. https://doi.org/10.1186/s41747-020-00173-2

Article  PubMed  PubMed Central  Google Scholar 

3D Slicer image computing platform. 3D Slicer. https://slicer.org/

Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341. https://doi.org/10.1016/j.mri.2012.05.001

Article  PubMed  PubMed Central  Google Scholar 

van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77(21):e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li C, Liu M, Zhang Y et al (2023) Novel models by machine learning to predict prognosis of breast cancer brain metastases. J Transl Med 21(1):404. https://doi.org/10.1186/s12967-023-04277-2

Article  PubMed  PubMed Central  Google Scholar 

Akiba T, Sano S, Yanase T, Ohta T, Koyama M. (2019) Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. KDD ’19. Association for computing machinery; pp 2623–2631. https://doi.org/10.1145/3292500.3330701

Turner MC, Chen Y, Krewski D, Calle EE, Thun MJ (2007) Chronic obstructive pulmonary disease is associated with lung cancer mortality in a prospective study of never smokers. Am J Respir Crit Care Med 176(3):285–290. https://doi.org/10.1164/rccm.200612-1792OC

Article  PubMed  Google Scholar 

Kashihara T, Nakayama Y, Okuma K et al (2023) Impact of interstitial lung abnormality on survival after adjuvant durvalumab with chemoradiotherapy for locally advanced non-small cell lung cancer. Radiother Oncol J Eur Soc Therapeutic Radiol Oncol 180:109454. https://doi.org/10.1016/j.radonc.2022.109454

Article  CAS  Google Scholar 

Yasuura Y, Terada Y, Mizuno K et al (2022) Quantitative severity of emphysema is related to the prognostic outcome of early-stage lung cancer. Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio-Thorac Surg. 62(5):ezac499. https://doi.org/10.1093/ejcts/ezac499

Article  Google Scholar 

留言 (0)

沒有登入
gif