Recent Discoveries of Antifungal Activity in Plant Antimicrobial Peptides

Akkan Y (2016) A review of antifungal peptides: Basis to new era of antifungal drugs. Jordan J Pharm Sci 9:51–75

Article  Google Scholar 

Al Musaimi O, Lombardi L, Williams DR, Albericio F (2022) Strategies for Improving peptide stability and delivery. Pharmaceuticals (Basel) 15:1283

Article  CAS  PubMed  Google Scholar 

Atiencia-Carrera MB, Cabezas-Mera FS, Vizuete K, Debut A, Tejera E, Machado A (2022) Evaluation of the biofilm life cycle between candida albicans and candida tropicalis. Front Cell Infect Microbiol 12:953168

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barashkova AS, Sadykova VS, Salo VA, Zavriev SK, Rogozhin EA (2021) Nigello thionins from black cumin (Nigella sativa L) seeds demonstrate strong antifungal and cytotoxic activity. Antibiotics (Basel) 10:166

Article  CAS  PubMed  Google Scholar 

Barbosa Pelegrini P, Perseghini del Sarto R, Nascimento Silva O, Franco OL, Grossi-de-Sa MF. Antibacterial peptides from plants: What they are and how they probably work. Biochem Res Int.2011;2011:1–9

Beliaev DV, Yuorieva NO, Tereshonok DV, Tashlieva II, Derevyagina MK, Meleshin AA et al (2021) High resistance of potato to early blight Is achieved by expression of the pro-SmAMP1 gene for hevein-like antimicrobial peptides from common chickweed (Stellaria media). Plants (Basel) 10:1395

CAS  PubMed  Google Scholar 

Bleackley MR, Dawson CS, Payne JAE, Harvey PJ, Rosengren KJ, Quimbar P et al (2019) The interaction with fungal cell wall polysaccharides determines the salt tolerance of antifungal plant defensins. The Cell Surface 5:100026

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bleackley MR, Vasa S, Harvey PJ, Shafee TMA, Kerenga BK, Soares da Costa TP et al (2020) Histidine-rich defensins from the Solanaceae and Brasicaceaeare antifungal and metal binding proteins. J Fungi (Basel) 6:145

Article  CAS  PubMed  Google Scholar 

Boonpa K, Tantong S, Weerawanich K, Panpetch P, Pringsulaka O, Roytrakul S et al (2019) In silico analyses of rice thioningenes and the antimicrobial activity of OsTHION15 against phytopathogens. Phytopathology 109:27–35

Article  CAS  PubMed  Google Scholar 

Brauer VS, Rezende CP, Pessoni AM, Paula RGD, Rangappa KS, Nayaka SC, Gupta VK, Almeida F (2019) Antifungal agents in agriculture: friends and foes of public health. Biomolecules 9:521

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cammue BP, De Bolle MF, Terras FR, Proost P, Van Damme J, Rees SB, Vanderleyden J et al (1992) Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis jalapa L. seeds. J Biol Chem 267:2228–2233

Article  CAS  PubMed  Google Scholar 

Campese M, Sun X, Bosch JA, Oppenheim FG, Helmerhorst EJ (2009) Concentration and fate of histatins and acidic proline-rich proteins in the oral environment. Arch Oral Biol 54:345–353

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carvalho AO, Gomes VM (2009) Plant defensins: prospects for the biological functions and biotechnological properties. Peptides 30:1007–1020

Article  CAS  PubMed  Google Scholar 

Chan YL, Prasad V, Sanjaya CKH, Liu PC, Chan MT, Cheng CP (2005) Transgenic tomato plants expressing an Arabidopsis thionin (Thi2.1) driven by fruit-inactive promoter battle against phytopathogenic attack. Planta 221:386–393

Article  CAS  PubMed  Google Scholar 

Chekan JR, Mydy LS, Pasquale MA, Kersten RD (2024) Plant peptides - redefining an area of ribosomally synthesized and post-translationally modified peptides. Nat Prod Rep 41:1020–1059

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen KC, Lin CY, Kuan CC, Sung HY, Chen CS (2002) A novel defensin encoded by a mungbean cDNA exhibits insecticidal activity against bruchid. J Agric Food Chem 50:7258–7263

Article  CAS  PubMed  Google Scholar 

Chiu T, Poucet T, Li Y (2022) The potential of plant proteins as antifungal agents for agricultural applications. Synth Syst Biotechnol 7:1075–1083

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conlon JM, Sonnevend S, Patel M, Al-Dhaheri K, Nielsen PF, Kolodziejekd J et al (2004) A family of brevinin-2 peptides with potent activity against Pseudomonas aeruginosa from the skin of the hokkaido frog. Rana Pirica Regul Pept 118:135–141

Article  CAS  PubMed  Google Scholar 

Cools TL, Struyfs C, Cammue BP, Thevissen K (2017) Antifungal plant defensins: increased insight in their mode of action as a basis for their use to combat fungal infections. Future Microbiol 12:441–454

Article  CAS  PubMed  Google Scholar 

Craik DJ (2012) Host-defense activities of cyclotides. Toxins (Basel) 4:139–156

Article  CAS  PubMed  Google Scholar 

de Beer A, Vivier MA (2011) Four plant defensins from an indigenous south African Brassicaceae species display divergent activities against two test pathogens despite high sequence similarity in the encoding genes. BMC Res Notes 4:459

Article  PubMed  PubMed Central  Google Scholar 

de Oliveira MÉ, Taveira GB, de Oliveira CA, Gomes VM (2019) Improved smallest peptides based on positive charge increase of the γ-core motif from PνD1 and their mechanism of action against Candida species. Int J Nanomedicine 14:407–420

Article  Google Scholar 

De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3:133–149

Article  PubMed  PubMed Central  Google Scholar 

De Coninck B, Cammue BPA, Thevissen K (2013) Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. Fungal Biol Rev 26:109–120

Article  Google Scholar 

Djami-Tchatchou AT, Tetorya M, Godwin J, Codjoe JM, Li H, Shah DM (2023) Small cationic cysteine-rich defensin-derived antifungal peptide controls white mold in soybean. J Fungi (Basel) 9:873–913

Article  CAS  PubMed  Google Scholar 

Duncan VMS, O´Neil DA. (2013) Commercialization of antifungal peptides. Fungal Biol Rev 26:156–165

Article  Google Scholar 

Evett GE, Donaldson DM, Vernon LP (1986) Biological properties of pyrulariathionin prepared from nuts of Pyrulariapubera. Toxicon 24:622–625

Article  CAS  PubMed  Google Scholar 

Fedders H, Michalek M, Grötzinger J, Leippe M (2008) An exceptional salt-tolerant antimicrobial peptide derived from a novel gene family of haemocytes of the marine invertebrate Ciona intestinalis. Biochem J 416:65–75

Article  CAS  PubMed  Google Scholar 

Fernández A, Colombo ML, Curto LM, Gómez GE, Delfino JM, Guzmán F, Bakás L, Malbrán I, Vairo-Cavalli SE (2021) Peptides derived from the α-core and γ-core regions of a putative Silybummarianum flower defensin show antifungal activity against Fusarium graminearum. Front Microbiol 12:632008

Article  PubMed  PubMed Central  Google Scholar 

Florack DEA, Visser B, De Vries PM, Van Vuurde JWL, Stiekema WJ (1993) Analysis of the toxicity of purothionins and hordothionins for plant pathogenic bacteria. Neth J Plant Pathol 99:259–268

Article  CAS  Google Scholar 

Fox JL (2013) Antimicrobial peptides stage a comeback. Nat Biotechnol 31:379–383

Article  CAS  PubMed  Google Scholar 

Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720

Article  CAS  PubMed  Google Scholar 

Garcia-Rubio R, de Oliveira HC, Rivera J, Trevijano-Contador N (2020) The fungal cell wall: Candida, Cryptococcus, and Aspergillus species. Front Microbiol 10:2993

Article 

留言 (0)

沒有登入
gif