Sumida Y, Nakajima A, Itoh Y (2014) Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 20:475–485
Article PubMed PubMed Central Google Scholar
Li Q, Dhyani M, Grajo JR, Sirlin C, Samir AE (2018) Current status of imaging in nonalcoholic fatty liver disease. World J Gastroenterol 10:530–542
Gawrieh S, Knoedler DM, Saeian K, Wallace JR, Komorowski RA (2011) Effects of interventions on intra- and interobserver agreement on interpretation of nonalcoholic fatty liver disease histology. Ann Diagn Pathol 15:19–24
Younossi ZM, Gramlich T, Liu YC et al (1998) Nonalcoholic fatty liver disease: assessment of variability in pathologic interpretations. Mod Pathology: Official J United States Can Acad Pathol Inc 11:560–565
Shao T, Josephson L, Liang SH (2019) PET/SPECT Molecular Probes for the diagnosis and staging of nonalcoholic fatty liver disease. Mol Imaging 18:1536012119871455
Article PubMed PubMed Central Google Scholar
Wegrzyniak O, Rosestedt M, Eriksson O (2021) Recent progress in the Molecular Imaging of nonalcoholic fatty liver disease. Int J Mol Sci 22:7348
Article CAS PubMed PubMed Central Google Scholar
Sarkar S, Matsukuma KE, Spencer B et al (2021) Dynamic Positron Emission Tomography/Computed Tomography Imaging Correlate of Nonalcoholic Steatohepatitis. Clin Gastroenterol Hepatol 19:2441–2443
Sarkar S, Corwin MT, Olson KA et al (2019) Pilot study to diagnose nonalcoholic Steatohepatitis with dynamic 18F-FDG PET. Am J Roentgenol 212:529–537
Hatori A, Yui J, Xie L et al (2015) Utility of Translocator Protein (18 kDa) as a Molecular Imaging Biomarker to monitor the progression of liver fibrosis. Sci Rep 5:17327
Article CAS PubMed PubMed Central Google Scholar
Xie L, Yui J, Hatori A et al (2012) Translocator protein (18 kDa), a potential molecular imaging biomarker for non-invasively distinguishing non-alcoholic fatty liver disease. J Hepatol 57:1076–1082
Article CAS PubMed Google Scholar
Song Y, Qin C, Chen Y et al (2024) Non-invasive visualization of liver fibrosis with [68Ga]Ga-DOTA-FAPI-04 PET from preclinical insights to clinical translation. Eur J Nuclear Med Mol Imaging Online Ahead Print. https://doi.org/10.1007/s00259-024-06773-z
Higashikawa K, Horiguchi S, Tarisawa M et al (2020) Preclinical investigation of potential use of thymidine phosphorylase-targeting tracer for diagnosis of nonalcoholic steatohepatitis. Nucl Med Biol 82–83:25–32
Jun JH, Du K, Dutta RK et al (2024) The senescence-associated secretome of hedgehog-deficient hepatocytes drives MASLD progression. J Clin Investig 134(19):e180310
Article CAS PubMed PubMed Central Google Scholar
Takahashi M, Seki K, Nishijima K et al (2008) Synthesis of a radioiodinated thymidine phosphorylase inhibitor and its preliminary evaluation as a potential SPECT tracer for angiogenic enzyme expression. J Label Compd Radiopharm 51:384–387
Kobashi N, Matsumoto H, Zhao S et al (2016) The thymidine phosphorylase imaging Agent 123I-IIMU predicts the efficacy of Capecitabine. J Nucl Med 57:1276–1281
Article CAS PubMed Google Scholar
Zhao S, Li H, Nishijima K et al (2015) Relationship between biodistribution of a novel thymidine phosphorylase (TP) imaging probe and TP expression levels in normal mice. Ann Nucl Med 29:582–587
Article CAS PubMed Google Scholar
Li H, Zhao S, Jin Y et al (2011) Radiolabeled uracil derivative as a novel SPECT probe for thymidine phosphorylase: suppressed accumulation into tumor cells by target gene knockdown. Nucl Med Commun 32:1211–1215
Article CAS PubMed Google Scholar
Akizawa H, Zhao S, Takahashi M et al (2010) In vitro and in vivo evaluations of a radioiodinated thymidine phosphorylase inhibitor as a tumor diagnostic agent for angiogenic enzyme imaging. Nucl Med Biol 37:427–432
Article CAS PubMed Google Scholar
Watanabe S, Nishijima K, Okamoto S et al (2020) Biodistribution and internal radiation dosimetry of a novel probe for thymidine phosphorylase imaging, [123I]IIMU, in healthy volunteers. Ann Nucl Med 34:595–599
Article CAS PubMed Google Scholar
Li W, Yue H (2018) Thymidine phosphorylase: a potential new target for treating cardiovascular disease. Trends Cardiovasc Med 28:157–171
Ustsinau U, Kulterer OC, Rausch I et al (2024) A PET/MRI study on the effect of obesity and NAFLD on hepatic [18F]FDG uptake. Eur J Radiol 177:111552
Keramida G, Peters AM (2020) FDG PET/CT of the non-malignant liver in an increasingly obese world population. Clin Physiol Funct Imaging 40:304–319
Article CAS PubMed Google Scholar
Lau JKC, Zhang X, Yu J (2017) Animal models of non-alcoholic fatty liver disease: current perspectives and recent advances. J Pathol 241:36–44
Stephenson K, Kennedy L, Hargrove L et al (2018) Updates on Dietary models of nonalcoholic fatty liver disease: current studies and insights. Gene Expr 18:5–17
Article CAS PubMed PubMed Central Google Scholar
Haraguchi M, Tsujimoto H, Fukushima M et al (2002) Targeted deletion of both thymidine phosphorylase and Uridine Phosphorylase and consequent disorders in mice. Mol Cell Biol 22:5212–5221
Article CAS PubMed PubMed Central Google Scholar
Lee SS, Park SH (2014) Radiologic evaluation of nonalcoholic fatty liver disease. World J Gastroenterol 20:7392–7402
留言 (0)