The microbial phosphorus cycle in aquatic ecosystems

Van Mooy, B. A. S. et al. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458, 69–72 (2009). This study reports the discovery of phospholipid substitution in response to phosphorus stress.

Article  PubMed  Google Scholar 

Pasek, M. A. in Prebiotic Chemistry and Chemical Evolution of Nucleic Acids (ed. Menor-Salván, C.) 175–197 (Springer International Publishing, 2018).

Lynam, M. M. et al. Atmospheric dry and wet deposition of total phosphorus to the Great Lakes. Atmos. Environ. 313, 120049 (2023).

Article  CAS  Google Scholar 

Jickells, T. & Moore, C. M. The importance of atmospheric deposition for Ocean productivity. Annu. Rev. Ecol. Evol. Syst. 46, 481–501 (2015).

Article  Google Scholar 

Ruttenberg, K. C. in Treatise on Geochemistry 2nd edn (eds Holland, H. D. & Turekian, K. K.) 499–558 (Elsevier, 2014). This is a comprehensive review of the global phosphorus cycle.

Mackey, K. R. M., Van Mooy, B., Cade-Menun, B. J. & Paytan, A. in Encyclopedia of Microbiology 4th edn (ed. Schmidt, T. M.) 506–519 (Academic Press, 2019).

Karl, D. M. Microbially mediated transformations of phosphorus in the sea: new views of an old cycle. Annu. Rev. Mar. Sci. 6, 279–337 (2014).

Article  Google Scholar 

Duhamel, S. et al. Phosphorus as an integral component of global marine biogeochemistry. Nat. Geosci. 14, 359–368 (2021). This is a recent review of the marine biogeochemical cycling of phosphorus and its coupling to other elemental cycles.

Article  CAS  Google Scholar 

McMahon, K. D. & Read, E. K. Microbial contributions to phosphorus cycling in eutrophic lakes and wastewater. Annu. Rev. Microbiol. 67, 199–219 (2013).

Article  PubMed  CAS  Google Scholar 

Smil, V. Phosphorus in the environment: natural flows and human interferences. Annu. Rev. Energy Environ. 25, 53–88 (2000).

Article  Google Scholar 

Altieri, A. H. & Diaz, R. J. in World Seas: An Environmental Evaluation 2nd edn (ed. Sheppard, C.) 453–473 (Academic Press, 2019).

Berthold, M. et al. Magnitude and influence of atmospheric phosphorus deposition on the southern Baltic Sea coast over 23 years: implications for coastal waters. Environ. Sci. Eur. 31, 27 (2019).

Article  Google Scholar 

Brahney, J., Mahowald, N., Ward, D. S., Ballantyne, A. P. & Neff, J. C. Is atmospheric phosphorus pollution altering global alpine lake stoichiometry? Glob. Biogeochem. Cycles 29, 1369–1383 (2015).

Article  CAS  Google Scholar 

Violaki, K. et al. Bioaerosols and dust are the dominant sources of organic P in atmospheric particles. npj Clim. Atmos. Sci. 4, 1–7 (2021).

Article  Google Scholar 

Otero, X. L. et al. Seabird colonies as important global drivers in the nitrogen and phosphorus cycles. Nat. Commun. 9, 246 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Zimmerman, A. E. et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat. Rev. Microbiol. 18, 21–34 (2020).

Article  PubMed  CAS  Google Scholar 

Hudson, J. J., Taylor, W. D. & Schindler, D. W. Phosphate concentrations in lakes. Nature 406, 54–56 (2000).

Article  PubMed  CAS  Google Scholar 

Wetzel, R. G. in Limnology: Lake and River Ecosystems (Elsevier Science, 2001).

Schindler, D. W. Evolution of phosphorus limitation in lakes. Science 195, 260–262 (1977).

Article  PubMed  CAS  Google Scholar 

Browning, T. J. & Moore, C. M. Global analysis of ocean phytoplankton nutrient limitation reveals high prevalence of co-limitation. Nat. Commun. 14, 5014 (2023).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Coleman, M. L. & Chisholm, S. W. Ecosystem-specific selection pressures revealed through comparative population genomics. Proc. Natl Acad. Sci. USA 107, 18634–18639 (2010).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Trommer, G., Leynaert, A., Klein, C., Naegelen, A. & Beker, B. Phytoplankton phosphorus limitation in a North Atlantic coastal ecosystem not predicted by nutrient load. J. Plankton Res. 35, 1207–1219 (2013).

Article  CAS  Google Scholar 

Wang, C. et al. Causal relationship between alkaline phosphatase activities and phosphorus dynamics in a eutrophic coastal lagoon in Lake Michigan. Sci. Total Environ. 787, 147681 (2021).

Article  CAS  Google Scholar 

Jover, L. F., Effler, T. C., Buchan, A., Wilhelm, S. W. & Weitz, J. S. The elemental composition of virus particles: implications for marine biogeochemical cycles. Nat. Rev. Microbiol. 12, 519–528 (2014).

Article  PubMed  CAS  Google Scholar 

Sullivan, M. B. et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ. Microbiol. 12, 3035–3056 (2010).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hsieh, Y.-J. & Wanner, B. L. Global regulation by the seven-component Pi signaling system. Curr. Opin. Microbiol. 13, 198–203 (2010).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Helliwell, K. E. et al. A novel Ca2+ signaling pathway coordinates environmental phosphorus sensing and nitrogen metabolism in marine diatoms. Curr. Biol. 31, 978–989.e4 (2021).

Article  PubMed  CAS  Google Scholar 

Lin, S., Litaker, R. W. & Sunda, W. G. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. J. Phycol. 52, 10–36 (2016).

Article  PubMed  CAS  Google Scholar 

Björkman, K. M., Duhamel, S. & Karl, D. M. Microbial group specific uptake kinetics of inorganic phosphate and adenosine-5′-triphosphate (ATP) in the North Pacific subtropical gyre. Front. Microbiol. 3, 189 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Lomas, M. W., Bonachela, J. A., Levin, S. A. & Martiny, A. C. Impact of ocean phytoplankton diversity on phosphate uptake. Proc. Natl Acad. Sci. USA 111, 17540–17545 (2014). This study shows that microbial taxa growing in low-phosphorus ocean have enhanced phosphate uptake capabilities.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kumar, N. A., Raja Rao, V. N. & Rengasamy, R. Size differential growth and uptake kinetics of inorganic phosphate in some marine diatoms. J. Phytol. 1, 7585 (2009).

Google Scholar 

Ahn, C. Y., Chung, A. S. & Oh, H. M. Diel rhythm of algal phosphate uptake rates in P-limited cyclostats and simulation of its effect on growth and competition. J. Phycol. 38, 695–704 (2002).

Article  CAS  Google Scholar 

Chisholm, S. W. & Stross, R. G. Phosphate uptake kinetics in Euglena Gracilis (z) (Euglenophyceae) grown on light/dark cycles. I. Synchronized batch cultures. J. Phycol. 12, 210–217 (1976).

Article  CAS  Google Scholar 

Duhamel, S., Björkman, K. M. & Karl, D. M. Light dependence of phosphorus uptake by microorganisms in the North and South Pacific subtropical gyres. Aquat. Microb. Ecol. 67, 225–238 (2012).

Article  Google Scholar 

Karl, D. M. & Björkman, K. in Biogeochemistry of Marine Dissolved Organic Matter (eds Hansell, D. & Carlson, C.) 233–334 (Academic Press, 2015).

Cembella, A. D., Antia, N. J. & Harrison, P. J. The utilization of inorganic and organic phosphorus compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part I. Crit. Rev. Microbiol. 10, 317–391 (1984).

Article  PubMed  CAS  Google Scholar 

Letscher, R. T., Wang, W.-L., Liang, Z. & Knapp, A. N. Regionally variable contribution of dissolved organic phosphorus to marine annual net community production. Glob. Biogeochem. Cycles 36, e2022GB007354 (2022). This study demonstrates the importance of dissolved organic phosphorus utilization in supporting net community production.

Article  CAS  Google Scholar 

Thompson, S. K. & Cotner, J. B. Bioavailability of dissolved organic phosphorus in temperate lakes. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2018.00062 (2018).

Bell, D. W., Pellechia, P. J., Ingall, E. D. & Benitez-Nelson, C. R. Resolving marine dissolved organic phosphorus (DOP) composition in a coastal estuary. Limnol. Oceanogr. 65, 2787–2799 (2020).

Article  CAS  Google Scholar 

Read, E. K., Ivancic, M., Hanson, P., Cade-Menun, B. J. & McMahon, K. D. Phosphorus speciation in a eutrophic lake by 31P NMR spectroscopy. Water Res. 62, 229–240 (2014).

Article  PubMed  CAS  Google Scholar 

Feuillade, M. & Dorioz, J. M. Enzymatic release of phosphate in sediment

留言 (0)

沒有登入
gif