Van Mooy, B. A. S. et al. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458, 69–72 (2009). This study reports the discovery of phospholipid substitution in response to phosphorus stress.
Pasek, M. A. in Prebiotic Chemistry and Chemical Evolution of Nucleic Acids (ed. Menor-Salván, C.) 175–197 (Springer International Publishing, 2018).
Lynam, M. M. et al. Atmospheric dry and wet deposition of total phosphorus to the Great Lakes. Atmos. Environ. 313, 120049 (2023).
Jickells, T. & Moore, C. M. The importance of atmospheric deposition for Ocean productivity. Annu. Rev. Ecol. Evol. Syst. 46, 481–501 (2015).
Ruttenberg, K. C. in Treatise on Geochemistry 2nd edn (eds Holland, H. D. & Turekian, K. K.) 499–558 (Elsevier, 2014). This is a comprehensive review of the global phosphorus cycle.
Mackey, K. R. M., Van Mooy, B., Cade-Menun, B. J. & Paytan, A. in Encyclopedia of Microbiology 4th edn (ed. Schmidt, T. M.) 506–519 (Academic Press, 2019).
Karl, D. M. Microbially mediated transformations of phosphorus in the sea: new views of an old cycle. Annu. Rev. Mar. Sci. 6, 279–337 (2014).
Duhamel, S. et al. Phosphorus as an integral component of global marine biogeochemistry. Nat. Geosci. 14, 359–368 (2021). This is a recent review of the marine biogeochemical cycling of phosphorus and its coupling to other elemental cycles.
McMahon, K. D. & Read, E. K. Microbial contributions to phosphorus cycling in eutrophic lakes and wastewater. Annu. Rev. Microbiol. 67, 199–219 (2013).
Article PubMed CAS Google Scholar
Smil, V. Phosphorus in the environment: natural flows and human interferences. Annu. Rev. Energy Environ. 25, 53–88 (2000).
Altieri, A. H. & Diaz, R. J. in World Seas: An Environmental Evaluation 2nd edn (ed. Sheppard, C.) 453–473 (Academic Press, 2019).
Berthold, M. et al. Magnitude and influence of atmospheric phosphorus deposition on the southern Baltic Sea coast over 23 years: implications for coastal waters. Environ. Sci. Eur. 31, 27 (2019).
Brahney, J., Mahowald, N., Ward, D. S., Ballantyne, A. P. & Neff, J. C. Is atmospheric phosphorus pollution altering global alpine lake stoichiometry? Glob. Biogeochem. Cycles 29, 1369–1383 (2015).
Violaki, K. et al. Bioaerosols and dust are the dominant sources of organic P in atmospheric particles. npj Clim. Atmos. Sci. 4, 1–7 (2021).
Otero, X. L. et al. Seabird colonies as important global drivers in the nitrogen and phosphorus cycles. Nat. Commun. 9, 246 (2018).
Article PubMed PubMed Central Google Scholar
Zimmerman, A. E. et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat. Rev. Microbiol. 18, 21–34 (2020).
Article PubMed CAS Google Scholar
Hudson, J. J., Taylor, W. D. & Schindler, D. W. Phosphate concentrations in lakes. Nature 406, 54–56 (2000).
Article PubMed CAS Google Scholar
Wetzel, R. G. in Limnology: Lake and River Ecosystems (Elsevier Science, 2001).
Schindler, D. W. Evolution of phosphorus limitation in lakes. Science 195, 260–262 (1977).
Article PubMed CAS Google Scholar
Browning, T. J. & Moore, C. M. Global analysis of ocean phytoplankton nutrient limitation reveals high prevalence of co-limitation. Nat. Commun. 14, 5014 (2023).
Article PubMed PubMed Central CAS Google Scholar
Coleman, M. L. & Chisholm, S. W. Ecosystem-specific selection pressures revealed through comparative population genomics. Proc. Natl Acad. Sci. USA 107, 18634–18639 (2010).
Article PubMed PubMed Central CAS Google Scholar
Trommer, G., Leynaert, A., Klein, C., Naegelen, A. & Beker, B. Phytoplankton phosphorus limitation in a North Atlantic coastal ecosystem not predicted by nutrient load. J. Plankton Res. 35, 1207–1219 (2013).
Wang, C. et al. Causal relationship between alkaline phosphatase activities and phosphorus dynamics in a eutrophic coastal lagoon in Lake Michigan. Sci. Total Environ. 787, 147681 (2021).
Jover, L. F., Effler, T. C., Buchan, A., Wilhelm, S. W. & Weitz, J. S. The elemental composition of virus particles: implications for marine biogeochemical cycles. Nat. Rev. Microbiol. 12, 519–528 (2014).
Article PubMed CAS Google Scholar
Sullivan, M. B. et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ. Microbiol. 12, 3035–3056 (2010).
Article PubMed PubMed Central CAS Google Scholar
Hsieh, Y.-J. & Wanner, B. L. Global regulation by the seven-component Pi signaling system. Curr. Opin. Microbiol. 13, 198–203 (2010).
Article PubMed PubMed Central CAS Google Scholar
Helliwell, K. E. et al. A novel Ca2+ signaling pathway coordinates environmental phosphorus sensing and nitrogen metabolism in marine diatoms. Curr. Biol. 31, 978–989.e4 (2021).
Article PubMed CAS Google Scholar
Lin, S., Litaker, R. W. & Sunda, W. G. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. J. Phycol. 52, 10–36 (2016).
Article PubMed CAS Google Scholar
Björkman, K. M., Duhamel, S. & Karl, D. M. Microbial group specific uptake kinetics of inorganic phosphate and adenosine-5′-triphosphate (ATP) in the North Pacific subtropical gyre. Front. Microbiol. 3, 189 (2012).
Article PubMed PubMed Central Google Scholar
Lomas, M. W., Bonachela, J. A., Levin, S. A. & Martiny, A. C. Impact of ocean phytoplankton diversity on phosphate uptake. Proc. Natl Acad. Sci. USA 111, 17540–17545 (2014). This study shows that microbial taxa growing in low-phosphorus ocean have enhanced phosphate uptake capabilities.
Article PubMed PubMed Central CAS Google Scholar
Kumar, N. A., Raja Rao, V. N. & Rengasamy, R. Size differential growth and uptake kinetics of inorganic phosphate in some marine diatoms. J. Phytol. 1, 7585 (2009).
Ahn, C. Y., Chung, A. S. & Oh, H. M. Diel rhythm of algal phosphate uptake rates in P-limited cyclostats and simulation of its effect on growth and competition. J. Phycol. 38, 695–704 (2002).
Chisholm, S. W. & Stross, R. G. Phosphate uptake kinetics in Euglena Gracilis (z) (Euglenophyceae) grown on light/dark cycles. I. Synchronized batch cultures. J. Phycol. 12, 210–217 (1976).
Duhamel, S., Björkman, K. M. & Karl, D. M. Light dependence of phosphorus uptake by microorganisms in the North and South Pacific subtropical gyres. Aquat. Microb. Ecol. 67, 225–238 (2012).
Karl, D. M. & Björkman, K. in Biogeochemistry of Marine Dissolved Organic Matter (eds Hansell, D. & Carlson, C.) 233–334 (Academic Press, 2015).
Cembella, A. D., Antia, N. J. & Harrison, P. J. The utilization of inorganic and organic phosphorus compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part I. Crit. Rev. Microbiol. 10, 317–391 (1984).
Article PubMed CAS Google Scholar
Letscher, R. T., Wang, W.-L., Liang, Z. & Knapp, A. N. Regionally variable contribution of dissolved organic phosphorus to marine annual net community production. Glob. Biogeochem. Cycles 36, e2022GB007354 (2022). This study demonstrates the importance of dissolved organic phosphorus utilization in supporting net community production.
Thompson, S. K. & Cotner, J. B. Bioavailability of dissolved organic phosphorus in temperate lakes. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2018.00062 (2018).
Bell, D. W., Pellechia, P. J., Ingall, E. D. & Benitez-Nelson, C. R. Resolving marine dissolved organic phosphorus (DOP) composition in a coastal estuary. Limnol. Oceanogr. 65, 2787–2799 (2020).
Read, E. K., Ivancic, M., Hanson, P., Cade-Menun, B. J. & McMahon, K. D. Phosphorus speciation in a eutrophic lake by 31P NMR spectroscopy. Water Res. 62, 229–240 (2014).
Article PubMed CAS Google Scholar
Feuillade, M. & Dorioz, J. M. Enzymatic release of phosphate in sediment
留言 (0)