Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. https://doi.org/10.3322/caac.21708.
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.
Article PubMed CAS Google Scholar
Puckett Y, Garfield K. Pancreatic cancer. StatPearls. 2022. https://www.ncbi.nlm.nih.gov/books/NBK518996/.
Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2016;18(1):31–42. https://doi.org/10.1038/nrm.2016.132.
Article PubMed PubMed Central CAS Google Scholar
Elliott BA, Ho HT, Ranganathan SV, Vangaveti S, Ilkayeva O, Assi HA, Choi AK, Agris PF, Holley CL. Modification of messenger RNA by 2′-omethylation regulates gene expression in vivo. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-11375-7.
Article PubMed PubMed Central Google Scholar
Wang P, Doxtader KA, Nam Y. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell. 2016;63(2):306–17. https://doi.org/10.1016/J.MOLCEL.2016.05.041.
Article PubMed PubMed Central CAS Google Scholar
Zhang C, Fu J, Zhou Y. A review in research progress concerning m6A methylation and immunoregulation. Front Immunol. 2019;10:423288. https://doi.org/10.3389/FIMMU.2019.00922/BIBTEX.
Liu J, Li K, Cai J, Zhang M, Zhang X, Xiong X, Meng H, Xu X, Huang Z, Peng J, Fan J, Yi C. Landscape and regulation of m6A and m6Am methylome across human and mouse tissues. Mol Cell. 2020;77(2):426-440.e6. https://doi.org/10.1016/J.MOLCEL.2019.09.032.
Article PubMed CAS Google Scholar
Liu J, Yue Y, Han D, Wang X, Ye F, Zhang L, Jia G, Miao Y, Zhike L, Deng X, Dai Q, Chen W, He C. A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2013;10(2):93–5. https://doi.org/10.1038/nchembio.1432.
Article PubMed PubMed Central CAS Google Scholar
Boccaletto P, MacHnicka MA, Purta E, Pitkowski P, Baginski B, Wirecki TK, De Crécy-Lagard V, Ross R, Limbach PA, Kotter A, Helm M, Bujnicki JM. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018;46(D1):D303–7. https://doi.org/10.1093/nar/gkx1030.
Article PubMed CAS Google Scholar
Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 2015;12(8):767-U114. https://doi.org/10.1038/nmeth.3453.
Article PubMed PubMed Central CAS Google Scholar
Liu WW, Wang H, Zhu XY. Physio-pathological effects of N6-methyladenosine and its therapeutic implications in leukemia. Biomark Res. 2022;10(1):1–15. https://doi.org/10.1186/S40364-022-00410-3.
Mo W, Chen Z, Zhang X, Dai G, Ma D, Pan J, Zhang X, Wu G, Fan W. N6-methyladenosine demethylase FTO (fat mass and obesity-associated protein) as a novel mediator of statin effects in human endothelial cells. Arterioscler Thromb Vasc Biol. 2022;42(5):644–58. https://doi.org/10.1161/ATVBAHA.121.317295.
Article PubMed CAS Google Scholar
Wei J, Liu F, Lu Z, Fei Q, Ai Y, He PC, Shi H, Cui X, Su R, Klungland A, Jia G, Chen J, He C. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol Cell. 2018;71(6):973-985.e5. https://doi.org/10.1016/J.MOLCEL.2018.08.011.
Article PubMed PubMed Central CAS Google Scholar
Huang C, Chen W, Wang X. Studies on the fat mass and obesity-associated (FTO) gene and its impact on obesity-associated diseases. Genes Dis. 2023;10(6):2351–65. https://doi.org/10.1016/J.GENDIS.2022.04.014.
Article PubMed CAS Google Scholar
Ruud J, Alber J, Tokarska A, Engström Ruud L, Nolte H, Biglari N, Lippert R, Lautenschlager Ä, Cieślak PE, Szumiec Ł, Hess ME, Brönneke HS, Krüger M, Nissbrandt H, Korotkova T, Silberberg G, Rodriguez Parkitna J, Brüning JC. The fat mass and obesity-associated protein (FTO) regulates locomotor responses to novelty via D2R medium spiny neurons. Cell Rep. 2019;27(11):3182-3198.e9. https://doi.org/10.1016/J.CELREP.2019.05.037.
Article PubMed CAS Google Scholar
Gholamalizadeh M, Doaei S, Kalantari N, Mohammadi NK, Izadi P, Eini-Zinab H, Salonurmi T, Jarrahi AM, Rafieifar S, Janipoor R, Sadeghypor M, Tabesh GA, Goodarzi MO, Doaei S, Kalantari N, Mohammadi NK, Izadi P, Gholamalizadeh M, Eini-Zinab H, Goodarzi MO. Up-regulation of FTO gene expression was associated with increase in skeletal muscle mass in overweight male adolescents. Arch Med Sci. 2019;15(5):1133–7. https://doi.org/10.5114/AOMS.2019.87239.
Article PubMed PubMed Central Google Scholar
Chang JY, Park JH, Park SE, Shon J, Park YJ. The fat mass- and obesity-associated (FTO) gene to obesity: lessons from mouse models. Obesity. 2018;26(11):1674–86. https://doi.org/10.1002/OBY.22301.
Article PubMed CAS Google Scholar
Qu J, Hou Y, Chen Q, Chen J, Li Y, Zhang E, Gu H, Xu R, Liu Y, Cao W, Zhang J, Cao L, He J, Cai Z. RNA demethylase ALKBH5 promotes tumorigenesis in multiple myeloma via TRAF1-mediated activation of NF-κB and MAPK signaling pathways. Oncogene. 2021;41(3):400–13. https://doi.org/10.1038/s41388-021-02095-8.
Article PubMed PubMed Central CAS Google Scholar
Jain S, Koziej L, Poulis P, Kaczmarczyk I, Gaik M, Rawski M, Ranjan N, Glatt S, Rodnina MV. Modulation of translational decoding by m6A modification of mRNA. Nat Commun. 2023;14(1):1–13. https://doi.org/10.1038/s41467-023-40422-7.
Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C, He C. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 2017;27(3):315–28. https://doi.org/10.1038/CR.2017.15.
Article PubMed PubMed Central CAS Google Scholar
Zong X, Xiao X, Shen B, Jiang Q, Wang H, Lu Z, Wang F, Jin M, Min J, Wang F, Wang Y. The N6-methyladenosine RNA-binding protein YTHDF1 modulates the translation of TRAF6 to mediate the intestinal immune response. Nucleic Acids Res. 2021;49(10):5537–52. https://doi.org/10.1093/NAR/GKAB343.
Article PubMed PubMed Central CAS Google Scholar
Deng X, Su R, Stanford S, Chen J. Critical enzymatic functions of FTO in obesity and cancer. Front Endocrinol. 2018;9:380335. https://doi.org/10.3389/FENDO.2018.00396/BIBTEX.
Darnell RR, Shengdong KE, Darnell JE. Pre-mRNA processing includes N6 methylation of adenosine residues that are retained in mRNA exons and the fallacy of “RNA epigenetics.” RNA. 2018;24(3):262–7. https://doi.org/10.1261/RNA.065219.117.
Article PubMed PubMed Central CAS Google Scholar
Yang X, Zhang S, He C, Xue P, Zhang L, Zirui He L, Zang BF, Sun J, Zheng M. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST. Mol Cancer. 2020. https://doi.org/10.1186/s12943-020-1146-4.
Article PubMed PubMed Central Google Scholar
Fan H-N, Chen Z-Y, Chen X-Y, Chen M, Yi Y-C, Zhu J-S, Zhang J. METTL14-mediated m6A modification of circORC5 suppresses gastric cancer progression by regulating miR-30c-2-3p/AKT1S1 axis. Mol Cancer. 2022. https://doi.org/10.1186/s12943-022-01521-z.
Article PubMed PubMed Central Google Scholar
Chen L, Zhu Z, Ye S, Zheng M. The serum uric acid to serum creatinine ratio is an independent risk factor for diabetic kidney disease. Diabetes Metab Syndr Obes Targets Ther. 2022;15:3693. https://doi.org/10.2147/DMSO.S387426.
Yuan M, Abuduhaibaier S, Ren S, Zheng L, Yuan C. Characteristics of pancreatic ductal adenocarcinoma immune microenvironment and related immunotherapy strategies. Zhonghua Yi Xue Za Zhi. 2021;101(12):831–5. https://doi.org/10.3760/CMA.J.CN112137-20201027-02938.
留言 (0)