Wynshaw-Boris A (2007) Lissencephaly and LIS1: insights into the molecular mechanisms of neuronal migration and development. Clin Genet 72:296–304. https://doi.org/10.1111/j.1399-0004.2007.00888.x
Article CAS PubMed Google Scholar
Blazejewski SM, Bennison SA, Smith TH and Toyo-Oka K (2018) Neurodevelopmental genetic diseases associated with microdeletions and microduplications of chromosome 17p13.3. Front Genet 9:80. https://doi.org/10.3389/fgene.2018.00080
Van Allen M, Clarren SK (1983) A spectrum of gyral anomalies in Miller-Dieker (lissencephaly) syndrome. J Pediatr 102:559–564. https://doi.org/10.1016/s0022-3476(83)80184-x
Dobyns WB (1989) The neurogenetics of lissencephaly. Neurol Clin 7:89–105
Article CAS PubMed Google Scholar
Roos L, Jonch AE, Kjaergaard S, Taudorf K, Simonsen H, Hamborg-Petersen B, Brondum-Nielsen K, Kirchhoff M (2009) A new microduplication syndrome encompassing the region of the Miller-Dieker (17p13 deletion) syndrome. J Med Genet 46:703–710. https://doi.org/10.1136/jmg.2008.065094
Article CAS PubMed Google Scholar
Dobyns WB, Curry CJ, Hoyme HE, Turlington L, Ledbetter DH (1991) Clinical and molecular diagnosis of Miller-Dieker syndrome. Am J Hum Genet 48:584–594
CAS PubMed PubMed Central Google Scholar
Nagamani SC, Zhang F, Shchelochkov OA, Bi W, Ou Z, Scaglia F, Probst FJ, Shinawi M, Eng C, Hunter JV, Sparagana S, Lagoe E, Fong CT, Pearson M, Doco-Fenzy M, Landais E, Mozelle M, Chinault AC, Patel A, Bacino CA, Sahoo T, Kang SH, Cheung SW, Lupski JR, Stankiewicz P (2009) Microdeletions including YWHAE in the Miller-Dieker syndrome region on chromosome 17p13.3 result in facial dysmorphisms, growth restriction, and cognitive impairment. J Med Genet 46:825–833. https://doi.org/10.1136/jmg.2009.067637
Article CAS PubMed Google Scholar
Mochida GH (2009) Genetics and biology of microcephaly and lissencephaly. Semin Pediatr Neurol 16:120–126. https://doi.org/10.1016/j.spen.2009.07.001
Article PubMed PubMed Central Google Scholar
Jones KL, Gilbert EF, Kaveggia EG, Opitz JM (1980) The MIller-Dieker syndrome. Pediatrics 66:277–281
Article CAS PubMed Google Scholar
Bellucco FT, Nunes N, Colovati MES, Malinverni ACM, Caneloi TP, Soares MF, AB AP and Melaragno MI (2017) Miller-Dieker syndrome due to a 5.5-Mb 17p deletion in a 17;Y pseudodicentric chromosome. Cytogenet Genome Res 152:29-32https://doi.org/10.1159/000477920
Brock S, Dobyns WB and Jansen A (1993) PAFAH1B1-related lissencephaly/subcortical band heterotopia. In: Adam MP, Everman DB, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW and Amemiya A (eds) GeneReviews((R)), Seattle (WA). Accessed 11 Aug 2023
Sharief N, Craze J, Summers D, Butler L, Wood CB (1991) Miller-Dieker syndrome with ring chromosome 17. Arch Dis Child 66:710–712. https://doi.org/10.1136/adc.66.6.710
Article CAS PubMed PubMed Central Google Scholar
Mahgoub L, Aziz K, Davies D, Leonard N (2014) Miller-Dieker syndrome associated with congenital lobar emphysema. AJP Rep 4:13–16. https://doi.org/10.1055/s-0033-1364192
Article PubMed PubMed Central Google Scholar
Spalice A, Parisi P, Nicita F, Pizzardi G, Del Balzo F, Iannetti P (2009) Neuronal migration disorders: clinical, neuroradiologic and genetics aspects. Acta Paediatr 98:421–433. https://doi.org/10.1111/j.1651-2227.2008.01160.x
Article CAS PubMed Google Scholar
Pilz DT, Quarrell OW (1996) Syndromes with lissencephaly. J Med Genet 33:319–323. https://doi.org/10.1136/jmg.33.4.319
Article CAS PubMed PubMed Central Google Scholar
Shi X, Huang W, Lu J, He W, Liu Q, Wu J (2021) Prenatal diagnosis of Miller-Dieker syndrome by chromosomal microarray. Ann Hum Genet 85:92–96. https://doi.org/10.1111/ahg.12407
Article CAS PubMed Google Scholar
Koenig M, Dobyns WB, Di Donato N (2021) Lissencephaly: update on diagnostics and clinical management. Eur J Paediatr Neurol 35:147–152. https://doi.org/10.1016/j.ejpn.2021.09.013
Soares DC, Bradshaw NJ, Zou J, Kennaway CK, Hamilton RS, Chen ZA, Wear MA, Blackburn EA, Bramham J, Bottcher B, Millar JK, Barlow PN, Walkinshaw MD, Rappsilber J, Porteous DJ (2012) The mitosis and neurodevelopment proteins NDE1 and NDEL1 form dimers, tetramers, and polymers with a folded back structure in solution. J Biol Chem 287:32381–32393. https://doi.org/10.1074/jbc.M112.393439
Article CAS PubMed PubMed Central Google Scholar
Iefremova V, Manikakis G, Krefft O, Jabali A, Weynans K, Wilkens R, Marsoner F, Brandl B, Muller FJ, Koch P, Ladewig J (2017) An organoid-based model of cortical development identifies non-cell-autonomous defects in Wnt signaling contributing to Miller-Dieker syndrome. Cell Rep 19:50–59. https://doi.org/10.1016/j.celrep.2017.03.047
Article CAS PubMed Google Scholar
Bershteyn M, Hayashi Y, Desachy G, Hsiao EC, Sami S, Tsang KM, Weiss LA, Kriegstein AR, Yamanaka S, Wynshaw-Boris A (2014) Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells. Nature 507:99–103. https://doi.org/10.1038/nature12923
Article CAS PubMed PubMed Central Google Scholar
Bershteyn M, Nowakowski TJ, Pollen AA, Di Lullo E, Nene A, Wynshaw-Boris A, Kriegstein AR (2017) Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell 20(435–449):e4. https://doi.org/10.1016/j.stem.2016.12.007
Bjeije H, Soltani BM, Behmanesh M, Zali MR (2019) YWHAE long non-coding RNA competes with miR-323a-3p and miR-532-5p through activating K-Ras/Erk1/2 and PI3K/Akt signaling pathways in HCT116 cells. Hum Mol Genet 28:3219–3231. https://doi.org/10.1093/hmg/ddz146
Article CAS PubMed Google Scholar
Feller SM (2001) Crk family adaptors-signalling complex formation and biological roles. Oncogene 20:6348–6371. https://doi.org/10.1038/sj.onc.1204779
Article CAS PubMed Google Scholar
Hamilton BA, Smith DJ, Mueller KL, Kerrebrock AW, Bronson RT, van Berkel V, Daly MJ, Kruglyak L, Reeve MP, Nemhauser JL, Hawkins TL, Rubin EM, Lander ES (1997) The vibrator mutation causes neurodegeneration via reduced expression of PITP alpha: positional complementation cloning and extragenic suppression. Neuron 18:711–722. https://doi.org/10.1016/s0896-6273(00)80312-8
Article CAS PubMed Google Scholar
Xu YJ, Bhadra S, Mahdi ATA, Dev K, Yurtsever I, Nakamura TM (2023) Comprehensive mutational analysis of the checkpoint signaling function of Rpa1/Ssb1 in fission yeast. PLoS Genet 19(5):e1010691. https://doi.org/10.1371/journal.pgen.1010691
Article CAS PubMed PubMed Central Google Scholar
Mermoud JE (2022) The role of the m(6)A RNA methyltransferase METTL16 in gene expression and SAM homeostasis. Genes (Basel) 13. https://doi.org/10.3390/genes13122312
Bahmad HF, Ramesar L, Nosti C, Anthonio G, Brathwaite C, Vincentelli C, Castellano-Sanchez AA, Poppiti R (2022) Histopathologic findings associated with Miller-Dieker syndrome: an autopsy report. Diseases 10. https://doi.org/10.3390/diseases10040095
ATCC (2022) BJ cells. Retrieved from: https://www.atcc.org/products/crl-2522?matchtype=b&network=g&device=c&adposition=&keyword=bj%20cell%20line%20atcc&gad_source=1&gclid=CjwKCAjw4f6zBhBVEiwATEHFVn0bFwfcOfRsfD3j0kO66Z5YHoFFOyfYVELSaGgjYFZO-M-9bW_WIhoCWGgQAvD_BwE. Accessed 21 Apr 2022
Coriell Institute for Medical Research (2022) GM06047 cells. Retrieved from: https://www.coriell.org/0/Sections/Search/Sample_Detail.aspx?Ref=GM06047&Product=CC. Accessed 21 Apr 2022
Coriell Institute for Medical Research (2022) GM06097 cells. Retrieved from: https://www.coriell.org/0/Sections/Search/Sample_Detail.aspx?Ref=GM06097&Product=CC. Accessed 21 Apr 2022
Bioinformatics B (2023) FAST QC. Retrieved from: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 27 Sept 2023
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915. https://doi.org/10.1038/s41587-019-0201-4
Article CAS PubMed PubMed Central Google Scholar
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295. https://doi.org/10.1038/nbt.3122
Article CAS PubMed PubMed Central Google Scholar
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8
留言 (0)