Causal effects of plasma proteome on intervertebral disc degeneration: a comprehensive mendelian randomization study

(2020) Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of Disease Study 2019. Lancet 396:1204–1222. https://doi.org/10.1016/s0140-6736(20)30925-9

Wu A, March L, Zheng X, Huang J, Wang X, Zhao J, Blyth FM, Smith E, Buchbinder R, Hoy D (2020) Global low back pain prevalence and years lived with disability from 1990 to 2017: estimates from the global burden of Disease Study 2017. Ann Transl Med 8:299. https://doi.org/10.21037/atm.2020.02.175

Article  PubMed Central  Google Scholar 

Wang Y, Videman T, Battié MC (2012) ISSLS Prize winner: lumbar vertebral endplate lesions: associations with disc degeneration and back pain history. Spine (Phila Pa 1976) 37:1490–1496. https://doi.org/10.1097/BRS.0b013e3182608ac4

Article  Google Scholar 

Blanquer SB, Grijpma DW, Poot AA (2015) Delivery systems for the treatment of degenerated intervertebral discs. Adv Drug Deliv Rev 84:172–187. https://doi.org/10.1016/j.addr.2014.10.024

Article  CAS  Google Scholar 

Ji L, Wang Y, Lu T, Yang J, Luo C, Qiu B (2023) Identification of blood metabolites linked to the risk of intervertebral disc diseases: a comprehensive mendelian randomization study. Postgrad Med J 99:1148–1153. https://doi.org/10.1093/postmj/qgad052

Article  Google Scholar 

Vergroesen PP, Kingma I, Emanuel KS, Hoogendoorn RJ, Welting TJ, van Royen BJ, van Dieën JH, Smit TH (2015) Mechanics and biology in intervertebral disc degeneration: a vicious circle. Osteoarthritis Cartilage 23:1057–1070. https://doi.org/10.1016/j.joca.2015.03.028

Article  Google Scholar 

Kos N, Gradisnik L, Velnar T (2019) A brief review of the degenerative intervertebral disc disease. Med Arch 73:421–424. https://doi.org/10.5455/medarh.2019.73.421-424

Article  PubMed Central  Google Scholar 

Guo W, Li BL, Zhao JY, Li XM, Wang LF (2024) Causal associations between modifiable risk factors and intervertebral disc degeneration. Spine J 24:195–209. https://doi.org/10.1016/j.spinee.2023.10.021

Article  Google Scholar 

Wang F, Cai F, Shi R, Wang XH, Wu XT (2016) Aging and age related stresses: a senescence mechanism of intervertebral disc degeneration. Osteoarthritis Cartilage 24:398–408. https://doi.org/10.1016/j.joca.2015.09.019

Article  CAS  Google Scholar 

Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, Karlsson A, Al-Lazikani B, Hersey A, Oprea TI, Overington JP (2017) A comprehensive map of molecular drug targets. Nat Rev Drug Discov 16:19–34. https://doi.org/10.1038/nrd.2016.230

Article  CAS  Google Scholar 

Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16:71. https://doi.org/10.1186/s12951-018-0392-8

Article  CAS  Google Scholar 

Colombini A, Lombardi G, Corsi MM, Banfi G (2008) Pathophysiology of the human intervertebral disc. Int J Biochem Cell Biol 40:837–842. https://doi.org/10.1016/j.biocel.2007.12.011

Article  CAS  Google Scholar 

Patil P, Niedernhofer LJ, Robbins PD, Lee J, Sowa G, Vo N (2018) Cellular senescence in intervertebral disc aging and degeneration. Curr Mol Biol Rep 4:180–190. https://doi.org/10.1007/s40610-018-0108-8

Article  PubMed Central  Google Scholar 

Singh K, Masuda K, Thonar EJ, An HS, Cs-Szabo G (2009) Age-related changes in the extracellular matrix of nucleus pulposus and anulus fibrosus of human intervertebral disc. Spine (Phila Pa 1976) 34:10–16. https://doi.org/10.1097/BRS.0b013e31818e5ddd

Article  Google Scholar 

Palmer TM, Lawlor DA, Harbord RM, Sheehan NA, Tobias JH, Timpson NJ, Davey Smith G, Sterne JA (2012) Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat Methods Med Res 21:223–242. https://doi.org/10.1177/0962280210394459

Article  PubMed Central  Google Scholar 

Richmond RC, Davey Smith G (2022) Mendelian randomization: concepts and scope. Cold Spring Harb Perspect Med 12. https://doi.org/10.1101/cshperspect.a040501

Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, Swanson SA, VanderWeele TJ, Higgins JPT, Timpson NJ, Dimou N, Langenberg C, Golub RM, Loder EW, Gallo V, Tybjaerg-Hansen A, Davey Smith G, Egger M, Richards JB (2021) Strengthening the reporting of Observational studies in Epidemiology using mendelian randomization: the STROBE-MR Statement. JAMA 326:1614–1621. https://doi.org/10.1001/jama.2021.18236

Article  Google Scholar 

Ferkingstad E, Sulem P, Atlason BA, Sveinbjornsson G, Magnusson MI, Styrmisdottir EL, Gunnarsdottir K, Helgason A, Oddsson A, Halldorsson BV, Jensson BO, Zink F, Halldorsson GH, Masson G, Arnadottir GA, Katrinardottir H, Juliusson K, Magnusson MK, Magnusson OT, Fridriksdottir R, Saevarsdottir S, Gudjonsson SA, Stacey SN, Rognvaldsson S, Eiriksdottir T, Olafsdottir TA, Steinthorsdottir V, Tragante V, Ulfarsson MO, Stefansson H, Jonsdottir I, Holm H, Rafnar T, Melsted P, Saemundsdottir J, Norddahl GL, Lund SH, Gudbjartsson DF, Thorsteinsdottir U, Stefansson K (2021) Large-scale integration of the plasma proteome with genetics and disease. Nat Genet 53:1712–1721. https://doi.org/10.1038/s41588-021-00978-w

Article  CAS  Google Scholar 

Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, Reeve MP, Laivuori H, Aavikko M, Kaunisto MA, Loukola A, Lahtela E, Mattsson H, Laiho P, Della Briotta Parolo P, Lehisto AA, Kanai M, Mars N, Rämö J, Kiiskinen T, Heyne HO, Veerapen K, Rüeger S, Lemmelä S, Zhou W, Ruotsalainen S, Pärn K, Hiekkalinna T, Koskelainen S, Paajanen T, Llorens V, Gracia-Tabuenca J, Siirtola H, Reis K, Elnahas AG, Sun B, Foley CN, Aalto-Setälä K, Alasoo K, Arvas M, Auro K, Biswas S, Bizaki-Vallaskangas A, Carpen O, Chen CY, Dada OA, Ding Z, Ehm MG, Eklund K, Färkkilä M, Finucane H, Ganna A, Ghazal A, Graham RR, Green EM, Hakanen A, Hautalahti M, Hedman ÅK, Hiltunen M, Hinttala R, Hovatta I, Hu X, Huertas-Vazquez A, Huilaja L, Hunkapiller J, Jacob H, Jensen JN, Joensuu H, John S, Julkunen V, Jung M, Junttila J, Kaarniranta K, Kähönen M, Kajanne R, Kallio L, Kälviäinen R, Kaprio J, Kerimov N, Kettunen J, Kilpeläinen E, Kilpi T, Klinger K, Kosma VM, Kuopio T, Kurra V, Laisk T, Laukkanen J, Lawless N, Liu A, Longerich S, Mägi R, Mäkelä J, Mäkitie A, Malarstig A, Mannermaa A, Maranville J, Matakidou A, Meretoja T, Mozaffari SV, Niemi MEK, Niemi M, Niiranen T, CJ OD, Obeidat ME, Okafo G, Ollila HM, Palomäki A, Palotie T, Partanen J, Paul DS, Pelkonen M, Pendergrass RK, Petrovski S, Pitkäranta A, Platt A, Pulford D, Punkka E, Pussinen P, Raghavan N, Rahimov F, Rajpal D, Renaud NA, Riley-Gillis B, Rodosthenous R, Saarentaus E, Salminen A, Salminen E, Salomaa V, Schleutker J, Serpi R, Shen HY, Siegel R, Silander K, Siltanen S, Soini S, Soininen H, Sul JH, Tachmazidou I, Tasanen K, Tienari P, Toppila-Salmi S, Tukiainen T, Tuomi T, Turunen JA, Ulirsch JC, Vaura F, Virolainen P, Waring J, Waterworth D, Yang R, Nelis M, Reigo A, Metspalu A, Milani L, Esko T, Fox C, Havulinna AS, Perola M, Ripatti S, Jalanko A, Laitinen T, Mäkelä TP, Plenge R, McCarthy M, Runz H, Daly MJ, Palotie A (2023) FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613:508–518. https://doi.org/10.1038/s41586-022-05473-8

Davies NM, Holmes MV, Davey Smith G (2018) Reading mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ 362:k601. https://doi.org/10.1136/bmj.k601

Article  PubMed Central  Google Scholar 

Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, Burgess S, Bowden J, Langdon R, Tan VY, Yarmolinsky J, Shihab HA, Timpson NJ, Evans DM, Relton C, Martin RM, Davey Smith G, Gaunt TR, Haycock PC (2018) The MR-Base platform supports systematic causal inference across the human phenome. Elife 7. https://doi.org/10.7554/eLife.34408

Shim H, Chasman DI, Smith JD, Mora S, Ridker PM, Nickerson DA, Krauss RM, Stephens M (2015) A multivariate genome-wide association analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 caucasians. PLoS ONE 10:e0120758. https://doi.org/10.1371/journal.pone.0120758

Article  CAS  PubMed Central  Google Scholar 

Burgess S, Butterworth A, Thompson SG (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 37:658–665. https://doi.org/10.1002/gepi.21758

Article  PubMed Central  Google Scholar 

Noble WS (2009) How does multiple testing correction work? Nat Biotechnol 27:1135–1137. https://doi.org/10.1038/nbt1209-1135

Article  CAS  PubMed Central  Google Scholar 

Zhang Y, Xie J, Wen S, Cao P, Xiao W, Zhu J, Li S, Wang Z, Cen H, Zhu Z, Ding C, Ruan G (2023) Evaluating the causal effect of circulating proteome on the risk of osteoarthritis-related traits. Ann Rheum Dis 82:1606–1617. https://doi.org/10.1136/ard-2023-224459

Article  CAS  Google Scholar 

Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44:512–525. https://doi.org/10.1093/ije/dyv080

Article  PubMed Central  Google Scholar 

Burgess S, Thompson SG (2017) Interpreting findings from mendelian randomization using the MR-Egger method. Eur J Epidemiol 32:377–389. https://doi.org/10.1007/s10654-017-0255-x

Article  PubMed Central  Google Scholar 

Verbanck M, Chen CY, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases. Nat Genet 50:693–698. https://doi.org/10.1038/s41588-018-0099-7

Article  CAS  PubMed Central  Google Scholar 

Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG (2017) Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants. Epidemiology 28:30–42. https://doi.org/10.1097/ede.0000000000000559

Article  Google Scholar 

Cohen KR (2022) Management of chronic low back Pain. JAMA Intern Med 182:222–223. https://doi.org/10.1001/jamainternmed.2021.7359

Article  Google Scholar 

Hu Y, Yang R, Liu S, Song Z, Wang H (2024) The emerging roles of Nanocarrier Drug Delivery System in treatment of intervertebral disc degeneration-current knowledge, Hot spots, challenges and Future perspectives. Drug Des Devel Ther 18:1007–1022. https://doi.org/10.2147/dddt.S448807

Article  PubMed Central  Google Scholar 

Roughley PJ (2004) Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine (Phila Pa 1976) 29:2691–2699. https://doi.org/10.1097/01.brs.0000146101.53784.b1

Article  Google Scholar 

Vo NV, Hartman RA, Patil PR, Risbud MV, Kletsas D, Iatridis JC, Hoyland JA, Le Maitre CL, Sowa GA, Kang JD (2016) Molecular mechanisms of biological aging in intervertebral discs. J Orthop Res 34:1289–1306. https://doi.org/10.1002/jor.23195

Article  PubMed Central  Google Scholar 

Boxberger JI, Orlansky AS, Sen S, Elliott DM (2009) Reduced nucleus pulposus glycosaminoglycan content alters intervertebral disc dynamic viscoelastic mechanics. J Biomech 42:1941–1946. https://doi.org/10.1016/j.jbiomech.2009.05.008

Article 

留言 (0)

沒有登入
gif