Atomically thin bioelectronics

Novoselov, K. S. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

Article  CAS  PubMed  Google Scholar 

The Nobel Prize in Physics 2010. NobelPrize.org https://www.nobelprize.org/prizes/physics/2010/summary/.

Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).

Article  CAS  Google Scholar 

Bhimanapati, G. R. et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 9, 11509–11539 (2015).

Article  CAS  PubMed  Google Scholar 

Tan, C. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).

Article  CAS  PubMed  Google Scholar 

Choi, W. et al. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116–130 (2017).

Article  CAS  Google Scholar 

Kireev, D. & Offenhäusser, A. Graphene and two-dimensional devices for bioelectronics and neuroprosthetics. 2D Mater. 5, 042004 (2018).

Article  CAS  Google Scholar 

Lemme, M. C., Akinwande, D., Huyghebaert, C. & Stampfer, C. 2D materials for future heterogeneous electronics. Nat. Commun. 13, 1392 (2022).

Article  CAS  PubMed  Google Scholar 

Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

Article  CAS  PubMed  Google Scholar 

Hess, L. H., Seifert, M. & Garrido, J. A. Graphene transistors for bioelectronics. Proc. IEEE 101, 1780–1792 (2013).

Article  CAS  Google Scholar 

Kuila, T. et al. Recent advances in graphene-based biosensors. Biosens. Bioelectron. 26, 4637–4648 (2011).

Article  CAS  PubMed  Google Scholar 

Zhang, X. et al. Ultrasensitive field-effect biosensors enabled by the unique electronic properties of graphene. Small 16, 1902820 (2020).

Article  CAS  Google Scholar 

Chen, F. et al. Structures, properties, and challenges of emerging 2D materials in bioelectronics and biosensors. InfoMat 4, e12299 (2022).

Article  CAS  Google Scholar 

Savchenko, A., Kireev, D., Yin, R. T., Efimov, I. R. & Molokanova, E. Graphene-based cardiac sensors and actuators. Front. Bioeng. Biotechnol. 11, 1168667 (2023).

Article  PubMed  Google Scholar 

Kireev, D. et al. Fabrication, characterization and applications of graphene electronic tattoos. Nat. Protoc. 16, 2395–2417 (2021).

Article  CAS  PubMed  Google Scholar 

Viana, D. et al. Nanoporous graphene-based thin-film microelectrodes for in vivo high-resolution neural recording and stimulation. Nat. Nanotechnol. 19, 514–523 (2024).

Article  CAS  PubMed  Google Scholar 

Ramezani, M. et al. High-density transparent graphene arrays for predicting cellular calcium activity at depth from surface potential recordings. Nat. Nanotechnol. 19, 504–513 (2024).

Article  CAS  PubMed  Google Scholar 

Ku, M. et al. Smart, soft contact lens for wireless immunosensing of cortisol. Sci. Adv. 6, eabb2891 (2020).

Article  CAS  PubMed  Google Scholar 

Lee, Y. et al. Graphene-based stretchable/wearable self-powered touch sensor. Nano Energy 62, 259–267 (2019).

Article  CAS  Google Scholar 

Choi, C. et al. Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 11, 5934 (2020).

Article  CAS  PubMed  Google Scholar 

Park, Y. J. et al. All MoS2-based large area, skin-attachable active-matrix tactile sensor. ACS Nano 13, 3023–3030 (2019).

Article  CAS  PubMed  Google Scholar 

Choi, C. et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 8, 1664 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Park, S. et al. Laser-directed synthesis of strain-induced crumpled MoS2 structure for enhanced triboelectrification toward haptic sensors. Nano Energy 78, 105266 (2020).

Article  CAS  Google Scholar 

Silvestri, A. et al. The era of nano-bionic: 2D materials for wearable and implantable body sensors. Adv. Drug Deliv. Rev. 186, 114315 (2022).

Article  CAS  PubMed  Google Scholar 

Kireev, D., Kampfe, J., Hall, A. & Akinwande, D. Graphene electronic tattoos 2.0 with enhanced performance, breathability and robustness. npj 2D Mater. Appl. 6, 46 (2022).

Article  CAS  Google Scholar 

Kireev, D. et al. Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. Nat. Nanotechnol. 17, 864–870 (2022).

Article  CAS  PubMed  Google Scholar 

Yang, Y. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38, 217–224 (2019).

Article  PubMed  Google Scholar 

Yan, Z. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 375, 852–859 (2022).

Article  CAS  PubMed  Google Scholar 

Gogurla, N., Kim, Y., Cho, S., Kim, J. & Kim, S. Multifunctional and ultrathin electronic tattoo for on‐skin diagnostic and therapeutic applications. Adv. Mater. 33, 2008308 (2021).

Article  CAS  Google Scholar 

Wang, Q. et al. Self‐healable multifunctional electronic tattoos based on silk and graphene. Adv. Funct. Mater. 29, 1808695 (2019).

Article  Google Scholar 

Tringides, C. M. et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat. Nanotechnol. 16, 1019–1029 (2021).

Article  CAS  PubMed  Google Scholar 

Jang, H., Dai, Z., Ha, K.-H., Ameri, S. K. & Lu, N. Stretchability of PMMA-supported CVD graphene and of its electrical contacts. 2D Mater. 7, 014003 (2019).

Article  Google Scholar 

Kedambaimoole, V. et al. Reduced graphene oxide tattoo as wearable proximity sensor. Adv. Electron. Mater. 7, 2001214 (2021).

Article  CAS  Google Scholar 

Son, D. et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 13, 1057–1065 (2018).

Article  CAS  PubMed  Google Scholar 

Torrente-Rodríguez, R. M. et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter 2, 921–937 (2020).

Article  PubMed  Google Scholar 

Akinwande, D. & Kireev, D. Wearable graphene sensors use ambient light to monitor health. Nature 576, 220–221 (2019).

Article  CAS  PubMed  Google Scholar 

Sel, K. et al. Electrical characterization of graphene-based e-tattoos for bio-impedance-based physiologi

留言 (0)

沒有登入
gif